1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924
//! HdrSample is a port of Gil Tene's HdrHistogram to native Rust. It provides recording and
//! analyzing of sampled data value counts across a large, configurable value range with
//! configurable precision within the range. The resulting "HDR" histogram allows for fast and
//! accurate analysis of the extreme ranges of data with non-normal distributions, like latency.
//!
//! # HdrHistogram
//!
//! What follows is a description from [the HdrHistogram
//! website](https://hdrhistogram.github.io/HdrHistogram/). Users are encouraged to read the
//! documentation from the original [Java
//! implementation](https://github.com/HdrHistogram/HdrHistogram), as most of the concepts
//! translate directly to the Rust port.
//!
//! HdrHistogram supports the recording and analyzing of sampled data value counts across a
//! configurable integer value range with configurable value precision within the range. Value
//! precision is expressed as the number of significant digits in the value recording, and provides
//! control over value quantization behavior across the value range and the subsequent value
//! resolution at any given level.
//!
//! For example, a Histogram could be configured to track the counts of observed integer values
//! between 0 and 3,600,000,000 while maintaining a value precision of 3 significant digits across
//! that range. Value quantization within the range will thus be no larger than 1/1,000th (or 0.1%)
//! of any value. This example Histogram could be used to track and analyze the counts of observed
//! response times ranging between 1 microsecond and 1 hour in magnitude, while maintaining a value
//! resolution of 1 microsecond up to 1 millisecond, a resolution of 1 millisecond (or better) up
//! to one second, and a resolution of 1 second (or better) up to 1,000 seconds. At it's maximum
//! tracked value (1 hour), it would still maintain a resolution of 3.6 seconds (or better).
//!
//! HDR Histogram is designed for recording histograms of value measurements in latency and
//! performance sensitive applications. Measurements show value recording times as low as 3-6
//! nanoseconds on modern (circa 2014) Intel CPUs. The HDR Histogram maintains a fixed cost in both
//! space and time. A Histogram's memory footprint is constant, with no allocation operations
//! involved in recording data values or in iterating through them. The memory footprint is fixed
//! regardless of the number of data value samples recorded, and depends solely on the dynamic
//! range and precision chosen. The amount of work involved in recording a sample is constant, and
//! directly computes storage index locations such that no iteration or searching is ever involved
//! in recording data values.
//!
//! If you are looking for FFI bindings to
//! [`HdrHistogram_c`](https://github.com/HdrHistogram/HdrHistogram_c), you want the
//! [`hdrhistogram_c`](https://crates.io/crates/hdrhistogram_c) crate instead.
//!
//! # Interacting with the library
//!
//! HdrSample's API follows that of the original HdrHistogram Java implementation, with some
//! modifications to make its use more idiomatic in Rust. The description in this section has been
//! adapted from that given by the [Python port](https://github.com/HdrHistogram/HdrHistogram_py),
//! as it gives a nicer first-time introduction to the use of HdrHistogram than the Java docs do.
//!
//! HdrSample is generally used in one of two modes: recording samples, or querying for analytics.
//! In distributed deployments, the recording may be performed remotely (and possibly in multiple
//! locations), to then be aggregated later in a central location for analysis.
//!
//! ## Recording samples
//!
//! A histogram instance is created using the `::new` methods on the `Histogram` struct. These come
//! in three variants: `new`, `new_with_max`, and `new_with_bounds`. The first of these only sets
//! the required precision of the sampled data, but leaves the value range open such that any value
//! may be recorded. A `Histogram` created this way (or one where auto-resize has been explicitly
//! enabled) will automatically resize itself if a value that is too large to fit in the current
//! dataset is encountered. `new_with_max` sets an upper bound on the values to be recorded, and
//! disables auto-resizing, thus preventing any re-allocation during recording. If the application
//! attempts to record a larger value than this maximum bound, the `record` call will return an
//! error. Finally, `new_with_bounds` restricts the lowest representable value of the dataset,
//! such that a smaller range needs to be covered (thus reducing the overall allocation size).
//!
//! For example the example below shows how to create a `Histogram` that can count values in the
//! `[1..3600000]` range with 1% precision, which could be used to track latencies in the range `[1
//! msec..1 hour]`).
//!
//! ```
//! use hdrhistogram::Histogram;
//! let mut hist = Histogram::<u64>::new_with_bounds(1, 60 * 60 * 1000, 2).unwrap();
//!
//! // samples can be recorded using .record, which will error if the value is too small or large
//! hist.record(54321).expect("value 54321 should be in range");
//!
//! // for ergonomics, samples can also be recorded with +=
//! // this call will panic if the value is out of range!
//! hist += 54321;
//!
//! // if the code that generates the values is subject to Coordinated Omission,
//! // the self-correcting record method should be used instead.
//! // for example, if the expected sampling interval is 10 msec:
//! hist.record_correct(54321, 10).expect("value 54321 should be in range");
//! ```
//!
//! Note the `u64` type. This type can be changed to reduce the storage overhead for all the
//! histogram bins, at the cost of a risk of saturating if a large number of samples end up in the
//! same bin.
//!
//! ## Querying samples
//!
//! At any time, the histogram can be queried to return interesting statistical measurements, such
//! as the total number of recorded samples, or the value at a given quantile:
//!
//! ```
//! use hdrhistogram::Histogram;
//! let hist = Histogram::<u64>::new(2).unwrap();
//! // ...
//! println!("# of samples: {}", hist.len());
//! println!("99.9'th percentile: {}", hist.value_at_quantile(0.999));
//! ```
//!
//! Several useful iterators are also provided for quickly getting an overview of the dataset. The
//! simplest one is `iter_recorded()`, which yields one item for every non-empty sample bin. All
//! the HdrHistogram iterators are supported in HdrSample, so look for the `*Iterator` classes in
//! the [Java documentation](https://hdrhistogram.github.io/HdrHistogram/JavaDoc/).
//!
//! ```
//! use hdrhistogram::Histogram;
//! let hist = Histogram::<u64>::new(2).unwrap();
//! // ...
//! for v in hist.iter_recorded() {
//! println!("{}'th percentile of data is {} with {} samples",
//! v.percentile(), v.value_iterated_to(), v.count_at_value());
//! }
//! ```
//!
//! ## Panics and error handling
//!
//! As long as you're using safe, non-panicking functions (see below), this library should never
//! panic. Any panics you encounter are a bug; please file them in the issue tracker.
//!
//! A few functions have their functionality exposed via `AddAssign` and `SubAssign`
//! implementations. These alternate forms are equivalent to simply calling `unwrap()` on the
//! normal functions, so the normal rules of `unwrap()` apply: view with suspicion when used in
//! production code, etc.
//!
//! | Returns Result | Panics on error | Functionality |
//! | ------------------------------ | ------------------ | ------------------------------- |
//! | `h.record(v)` | `h += v` | Increment count for value `v` |
//! | `h.add(h2)` | `h += h2` | Add `h2`'s counts to `h` |
//! | `h.subtract(h2)` | `h -= h2` | Subtract `h2`'s counts from `h` |
//!
//! Other than the panicking forms of the above functions, everything will return `Result` or
//! `Option` if it can fail.
//!
//! ## `usize` limitations
//!
//! Depending on the configured number of significant digits and maximum value, a histogram's
//! internal storage may have hundreds of thousands of cells. Systems with a 16-bit `usize` cannot
//! represent pointer offsets that large, so relevant operations (creation, deserialization, etc)
//! will fail with a suitable error (e.g. `CreationError::UsizeTypeTooSmall`). If you are using such
//! a system and hitting these errors, reducing the number of significant digits will greatly reduce
//! memory consumption (and therefore the need for large `usize` values). Lowering the max value may
//! also help as long as resizing is disabled.
//!
//! 32- and above systems will not have any such issues, as all possible histograms fit within a
//! 32-bit index.
//!
//! ## Floating point accuracy
//!
//! Some calculations inherently involve floating point values, like `value_at_quantile`, and are
//! therefore subject to the precision limits of IEEE754 floating point calculations. The user-
//! visible consequence of this is that in certain corner cases, you might end up with a bucket (and
//! therefore value) that is higher or lower than it would be if the calculation had been done
//! with arbitrary-precision arithmetic. However, double-precision IEEE754 (i.e. `f64`) is very
//! good at its job, so these cases should be rare. Also, we haven't seen a case that was off by
//! more than one bucket.
//!
//! To minimize FP precision losses, we favor working with quantiles rather than percentiles. A
//! quantile represents a portion of a set with a number in `[0, 1]`. A percentile is the same
//! concept, except it uses the range `[0, 100]`. Working just with quantiles means we can skip an
//! FP operation in a few places, and therefore avoid opportunities for precision loss to creep in.
//!
//! # Limitations and Caveats
//!
//! As with all the other HdrHistogram ports, the latest features and bug fixes from the upstream
//! HdrHistogram implementations may not be available in this port. A number of features have also
//! not (yet) been implemented:
//!
//! - Concurrency support (`AtomicHistogram`, `ConcurrentHistogram`, …).
//! - `DoubleHistogram`.
//! - The `Recorder` feature of HdrHistogram.
//! - Value shifting ("normalization").
//! - Textual output methods. These seem almost orthogonal to HdrSample, though it might be
//! convenient if we implemented some relevant traits (CSV, JSON, and possibly simple
//! `fmt::Display`).
//!
//! Most of these should be fairly straightforward to add, as the code aligns pretty well with the
//! original Java/C# code. If you do decide to implement one and send a PR, please make sure you
//! also port the [test
//! cases](https://github.com/HdrHistogram/HdrHistogram/tree/master/src/test/java/org/HdrHistogram),
//! and try to make sure you implement appropriate traits to make the use of the feature as
//! ergonomic as possible.
#![deny(
missing_docs,
trivial_casts,
trivial_numeric_casts,
unused_extern_crates,
unused_import_braces,
unused_results,
variant_size_differences
)]
// Enable feature(test) is enabled so that we can have benchmarks of private code
#![cfg_attr(all(test, feature = "bench_private"), feature(test))]
#[cfg(all(test, feature = "bench_private"))]
extern crate test;
#[cfg(feature = "serialization")]
#[macro_use]
extern crate nom;
use num_traits::ToPrimitive;
use std::borrow::Borrow;
use std::cmp;
use std::ops::{Add, AddAssign, Sub, SubAssign};
use iterators::HistogramIterator;
/// Min value of a new histogram.
/// Equivalent to `u64::max_value()`, but const functions aren't allowed (yet).
/// See <https://github.com/rust-lang/rust/issues/24111>
const ORIGINAL_MIN: u64 = (-1_i64 >> 63) as u64;
/// Max value of a new histogram.
const ORIGINAL_MAX: u64 = 0;
/// `Histogram` is the core data structure in HdrSample. It records values, and performs analytics.
///
/// At its heart, it keeps the count for recorded samples in "buckets" of values. The resolution
/// and distribution of these buckets is tuned based on the desired highest trackable value, as
/// well as the user-specified number of significant decimal digits to preserve. The values for the
/// buckets are kept in a way that resembles floats and doubles: there is a mantissa and an
/// exponent, and each bucket represents a different exponent. The "sub-buckets" within a bucket
/// represent different values for the mantissa.
///
/// To a first approximation, the sub-buckets of the first
/// bucket would hold the values `0`, `1`, `2`, `3`, …, the sub-buckets of the second bucket would
/// hold `0`, `2`, `4`, `6`, …, the third would hold `0`, `4`, `8`, and so on. However, the low
/// half of each bucket (except bucket 0) is unnecessary, since those values are already covered by
/// the sub-buckets of all the preceeding buckets. Thus, `Histogram` keeps the top half of every
/// such bucket.
///
/// For the purposes of explanation, consider a `Histogram` with 2048 sub-buckets for every bucket,
/// and a lowest discernible value of 1:
///
/// <pre>
/// The 0th bucket covers 0...2047 in multiples of 1, using all 2048 sub-buckets
/// The 1st bucket covers 2048..4097 in multiples of 2, using only the top 1024 sub-buckets
/// The 2nd bucket covers 4096..8191 in multiple of 4, using only the top 1024 sub-buckets
/// ...
/// </pre>
///
/// Bucket 0 is "special" here. It is the only one that has 2048 entries. All the rest have
/// 1024 entries (because their bottom half overlaps with and is already covered by the all of
/// the previous buckets put together). In other words, the `k`'th bucket could represent `0 *
/// 2^k` to `2048 * 2^k` in 2048 buckets with `2^k` precision, but the midpoint of `1024 * 2^k
/// = 2048 * 2^(k-1)`, which is the k-1'th bucket's end. So, we would use the previous bucket
/// for those lower values as it has better precision.
///
#[derive(Debug, Clone)]
pub struct Histogram<T: Counter> {
auto_resize: bool,
// >= 2 * lowest_discernible_value
highest_trackable_value: u64,
// >= 1
lowest_discernible_value: u64,
// in [0, 5]
significant_value_digits: u8,
// in [1, 64]
bucket_count: u8,
// 2^(sub_bucket_half_count_magnitude + 1) = [2, 2^18]
sub_bucket_count: u32,
// sub_bucket_count / 2 = [1, 2^17]
sub_bucket_half_count: u32,
// In [0, 17]
sub_bucket_half_count_magnitude: u8,
// The bottom sub bucket's bits set, shifted by unit magnitude.
// The highest bit will be (one-indexed) sub bucket count magnitude + unit_magnitude.
sub_bucket_mask: u64,
// Number of leading zeros that would be used by the largest value in bucket 0.
// in [1, 63]
leading_zero_count_base: u8,
// Largest exponent of 2 that's smaller than the lowest discernible value. In [0, 62].
unit_magnitude: u8,
// low unit_magnitude bits set
unit_magnitude_mask: u64,
max_value: u64,
min_non_zero_value: u64,
total_count: u64,
counts: Vec<T>,
}
/// Module containing the implementations of all `Histogram` iterators.
pub mod iterators;
impl<T: Counter> Histogram<T> {
// ********************************************************************************************
// Histogram administrative read-outs
// ********************************************************************************************
/// Get the current number of distinct values that can be represented in the histogram.
pub fn distinct_values(&self) -> usize {
self.counts.len()
}
/// Get the lowest discernible value for the histogram in its current configuration.
pub fn low(&self) -> u64 {
self.lowest_discernible_value
}
/// Get the highest trackable value for the histogram in its current configuration.
pub fn high(&self) -> u64 {
self.highest_trackable_value
}
/// Get the number of significant value digits kept by this histogram.
pub fn sigfig(&self) -> u8 {
self.significant_value_digits
}
/// Get the total number of samples recorded.
#[deprecated(since = "6.0.0", note = "use `len` instead")]
pub fn count(&self) -> u64 {
self.total_count
}
/// Get the total number of samples recorded.
pub fn len(&self) -> u64 {
self.total_count
}
/// Returns true if this histogram has no recorded values.
pub fn is_empty(&self) -> bool {
self.total_count == 0
}
/// Get the number of buckets used by the histogram to cover the highest trackable value.
///
/// This method differs from `.len()` in that it does not count the sub buckets within each
/// bucket.
///
/// This method is probably only useful for testing purposes.
pub fn buckets(&self) -> u8 {
self.bucket_count
}
/// Returns true if this histogram is currently able to auto-resize as new samples are recorded.
pub fn is_auto_resize(&self) -> bool {
self.auto_resize
}
// ********************************************************************************************
// Methods for looking up the count for a given value/index
// ********************************************************************************************
/// Find the bucket the given value should be placed in.
/// Returns `None` if the corresponding index cannot be represented in `usize`.
fn index_for(&self, value: u64) -> Option<usize> {
let bucket_index = self.bucket_for(value);
let sub_bucket_index = self.sub_bucket_for(value, bucket_index);
debug_assert!(sub_bucket_index < self.sub_bucket_count);
debug_assert!(bucket_index == 0 || (sub_bucket_index >= self.sub_bucket_half_count));
// Calculate the index for the first entry that will be used in the bucket (halfway through
// sub_bucket_count). For bucket_index 0, all sub_bucket_count entries may be used, but
// bucket_base_index is still set in the middle.
let bucket_base_index =
(i32::from(bucket_index) + 1) << self.sub_bucket_half_count_magnitude;
// Calculate the offset in the bucket. This subtraction will result in a positive value in
// all buckets except the 0th bucket (since a value in that bucket may be less than half
// the bucket's 0 to sub_bucket_count range). However, this works out since we give bucket 0
// twice as much space.
let offset_in_bucket = sub_bucket_index as i32 - self.sub_bucket_half_count as i32;
let index = bucket_base_index + offset_in_bucket;
// This is always non-negative because offset_in_bucket is only negative (and only then by
// sub_bucket_half_count at most) for bucket 0, and bucket_base_index will be halfway into
// bucket 0's sub buckets in that case.
debug_assert!(index >= 0);
index.to_usize()
}
/// Find the bucket the given value should be placed in.
/// If the value is bigger than what this histogram can express, the last valid bucket index
/// is returned instead.
fn index_for_or_last(&self, value: u64) -> usize {
self.index_for(value)
.map_or(self.last_index(), |i| cmp::min(i, self.last_index()))
}
/// Get a mutable reference to the count bucket for the given value, if it is in range.
fn mut_at(&mut self, value: u64) -> Option<&mut T> {
self.index_for(value)
.and_then(move |i| self.counts.get_mut(i))
}
/// Get the index of the last histogram bin.
fn last_index(&self) -> usize {
self.distinct_values()
.checked_sub(1)
.expect("Empty counts array?")
}
// ********************************************************************************************
// Histograms should be cloneable.
// ********************************************************************************************
/// Get a copy of this histogram, corrected for coordinated omission.
///
/// To compensate for the loss of sampled values when a recorded value is larger than the
/// expected interval between value samples, the new histogram will include an auto-generated
/// additional series of decreasingly-smaller (down to the `interval`) value records for each
/// count found in the current histogram that is larger than the `interval`.
///
/// Note: This is a post-correction method, as opposed to the at-recording correction method
/// provided by `record_correct`. The two methods are mutually exclusive, and only one of the
/// two should be be used on a given data set to correct for the same coordinated omission
/// issue.
///
/// See notes in the description of the Histogram calls for an illustration of why this
/// corrective behavior is important.
///
/// If `interval` is larger than 0, add auto-generated value records as appropriate if value is
/// larger than `interval`.
pub fn clone_correct(&self, interval: u64) -> Histogram<T> {
let mut h = Histogram::new_from(self);
for v in self.iter_recorded() {
h.record_n_correct(v.value_iterated_to(), v.count_at_value(), interval)
.expect("Same dimensions; all values should be representable");
}
h
}
/// Overwrite this histogram with the given histogram. All data and statistics in this
/// histogram will be overwritten.
pub fn set_to<B: Borrow<Histogram<T>>>(&mut self, source: B) -> Result<(), AdditionError> {
self.reset();
self.add(source.borrow())
}
/// Overwrite this histogram with the given histogram while correcting for coordinated
/// omission. All data and statistics in this histogram will be overwritten. See
/// `clone_correct` for more detailed explanation about how correction is applied
pub fn set_to_corrected<B: Borrow<Histogram<T>>>(
&mut self,
source: B,
interval: u64,
) -> Result<(), RecordError> {
self.reset();
self.add_correct(source, interval)
}
// ********************************************************************************************
// Add and subtract methods for, well, adding or subtracting two histograms
// ********************************************************************************************
/// Add the contents of another histogram to this one.
///
/// Returns an error if values in the other histogram cannot be stored; see `AdditionError`.
pub fn add<B: Borrow<Histogram<T>>>(&mut self, source: B) -> Result<(), AdditionError> {
let source = source.borrow();
// If source is empty there's nothing to add
if source.is_empty() {
return Ok(());
}
// make sure we can take the values in source
let top = self.highest_equivalent(self.value_for(self.last_index()));
if top < source.max() {
if !self.auto_resize {
return Err(AdditionError::OtherAddendValueExceedsRange);
}
// We're growing the histogram, so new high > old high and is therefore >= 2x low.
self.resize(source.max())
.map_err(|_| AdditionError::ResizeFailedUsizeTypeTooSmall)?;
}
let matching_buckets = self.bucket_count == source.bucket_count
&& self.sub_bucket_count == source.sub_bucket_count
&& self.unit_magnitude == source.unit_magnitude;
if matching_buckets && self.is_empty() {
// Counts arrays are of the same length and meaning.
// If self is empty (all counters are zeroes) we can copy the source histogram with a memory copy.
self.counts[..].copy_from_slice(&source.counts[..]);
self.total_count = source.total_count;
self.min_non_zero_value = source.min_non_zero_value;
self.max_value = source.max_value;
} else if matching_buckets {
// Counts arrays are of the same length and meaning,
// so we can just iterate and add directly:
let mut observed_other_total_count: u64 = 0;
for i in 0..source.distinct_values() {
let other_count = source
.count_at_index(i)
.expect("iterating inside source length");
if other_count != T::zero() {
// indexing is safe: same configuration as `source`, and the index was valid for
// `source`.
self.counts[i] = self.counts[i].saturating_add(other_count);
observed_other_total_count =
observed_other_total_count.saturating_add(other_count.as_u64());
}
}
self.total_count = self.total_count.saturating_add(observed_other_total_count);
let mx = source.max();
if mx > self.max() {
self.update_max(mx);
}
let mn = source.min_nz();
if mn < self.min_nz() {
self.update_min(mn);
}
} else {
// Arrays are not a direct match (or the other could change on the fly in some valid
// way), so we can't just stream through and add them. Instead, go through the array
// and add each non-zero value found at it's proper value:
// Do max value first, to avoid max value updates on each iteration:
let other_max_index = source
.index_for(source.max())
.expect("Index for max value must exist");
let other_count = source
.count_at_index(other_max_index)
.expect("max's index must exist");
self.record_n(source.value_for(other_max_index), other_count)
.expect("Record must succeed; already resized for max value");
// Record the remaining values, up to but not including the max value:
for i in 0..other_max_index {
let other_count = source
.count_at_index(i)
.expect("index before max must exist");
if other_count != T::zero() {
self.record_n(source.value_for(i), other_count)
.expect("Record must succeed; already recorded max value");
}
}
}
// TODO:
// if source.start_time < self.start_time {
// self.start_time = source.start_time;
// }
// if source.end_time > self.end_time {
// self.end_time = source.end_time;
// }
Ok(())
}
/// Add the contents of another histogram to this one, while correcting for coordinated
/// omission.
///
/// To compensate for the loss of sampled values when a recorded value is larger than the
/// expected interval between value samples, the values added will include an auto-generated
/// additional series of decreasingly-smaller (down to the given `interval`) value records for
/// each count found in the current histogram that is larger than `interval`.
///
/// Note: This is a post-recording correction method, as opposed to the at-recording correction
/// method provided by `record_correct`. The two methods are mutually exclusive, and only one
/// of the two should be be used on a given data set to correct for the same coordinated
/// omission issue.
///
/// See notes in the description of the `Histogram` calls for an illustration of why this
/// corrective behavior is important.
///
/// See `RecordError` for error conditions.
pub fn add_correct<B: Borrow<Histogram<T>>>(
&mut self,
source: B,
interval: u64,
) -> Result<(), RecordError> {
let source = source.borrow();
for v in source.iter_recorded() {
self.record_n_correct(v.value_iterated_to(), v.count_at_value(), interval)?;
}
Ok(())
}
/// Subtract the contents of another histogram from this one.
///
/// See `SubtractionError` for error conditions.
pub fn subtract<B: Borrow<Histogram<T>>>(
&mut self,
subtrahend: B,
) -> Result<(), SubtractionError> {
let subtrahend = subtrahend.borrow();
// If the source is empty there's nothing to subtract
if subtrahend.is_empty() {
return Ok(());
}
// make sure we can take the values in source
let top = self.highest_equivalent(self.value_for(self.last_index()));
if top < self.highest_equivalent(subtrahend.max()) {
return Err(SubtractionError::SubtrahendValueExceedsMinuendRange);
}
let old_min_highest_equiv = self.highest_equivalent(self.min());
let old_max_lowest_equiv = self.lowest_equivalent(self.max());
// If total_count is at the max value, it may have saturated, so we must restat
let mut needs_restat = self.total_count == u64::max_value();
for i in 0..subtrahend.distinct_values() {
let other_count = subtrahend
.count_at_index(i)
.expect("index inside subtrahend len must exist");
if other_count != T::zero() {
let other_value = subtrahend.value_for(i);
{
let mut_count = self.mut_at(other_value);
if let Some(c) = mut_count {
// TODO Perhaps we should saturating sub here? Or expose some form of
// pluggability so users could choose to error or saturate? Both seem
// useful. It's also sort of inconsistent with overflow, which now
// saturates.
*c = (*c)
.checked_sub(&other_count)
.ok_or(SubtractionError::SubtrahendCountExceedsMinuendCount)?;
} else {
panic!("Tried to subtract value outside of range: {}", other_value);
}
}
// we might have just set the min / max to have zero count.
if other_value <= old_min_highest_equiv || other_value >= old_max_lowest_equiv {
needs_restat = true;
}
if !needs_restat {
// if we're not already going to recalculate everything, subtract from
// total_count
self.total_count = self
.total_count
.checked_sub(other_count.as_u64())
.expect("total count underflow on subtraction");
}
}
}
if needs_restat {
let l = self.distinct_values();
self.restat(l);
}
Ok(())
}
// ********************************************************************************************
// Setters and resetters.
// ********************************************************************************************
/// Clear the contents of this histogram while preserving its statistics and configuration.
pub fn clear(&mut self) {
for c in &mut self.counts {
*c = T::zero();
}
self.total_count = 0;
}
/// Reset the contents and statistics of this histogram, preserving only its configuration.
pub fn reset(&mut self) {
self.clear();
self.reset_max(ORIGINAL_MAX);
self.reset_min(ORIGINAL_MIN);
// self.normalizing_index_offset = 0;
// self.start_time = time::Instant::now();
// self.end_time = time::Instant::now();
// self.tag = String::new();
}
/// Control whether or not the histogram can auto-resize and auto-adjust it's highest trackable
/// value as high-valued samples are recorded.
pub fn auto(&mut self, enabled: bool) {
self.auto_resize = enabled;
}
// ********************************************************************************************
// Construction.
// ********************************************************************************************
/// Construct an auto-resizing `Histogram` with a lowest discernible value of 1 and an
/// auto-adjusting highest trackable value. Can auto-resize up to track values up to
/// `(i64::max_value() / 2)`.
///
/// See [`new_with_bounds`] for info on `sigfig`.
///
/// [`new_with_bounds`]: #method.new_with_bounds
pub fn new(sigfig: u8) -> Result<Histogram<T>, CreationError> {
let mut h = Self::new_with_bounds(1, 2, sigfig);
if let Ok(ref mut h) = h {
h.auto_resize = true;
}
h
}
/// Construct a `Histogram` given a known maximum value to be tracked, and a number of
/// significant decimal digits. The histogram will be constructed to implicitly track
/// (distinguish from 0) values as low as 1. Auto-resizing will be disabled.
///
/// See [`new_with_bounds`] for info on `high` and `sigfig`.
///
/// [`new_with_bounds`]: #method.new_with_bounds
pub fn new_with_max(high: u64, sigfig: u8) -> Result<Histogram<T>, CreationError> {
Self::new_with_bounds(1, high, sigfig)
}
/// Construct a `Histogram` with known upper and lower bounds for recorded sample values.
///
/// `low` is the lowest value that can be discerned (distinguished from 0) by the histogram,
/// and must be a positive integer that is >= 1. It may be internally rounded down to nearest
/// power of 2. Providing a lowest discernible value (`low`) is useful is situations where the
/// units used for the histogram's values are much smaller that the minimal accuracy required.
/// E.g. when tracking time values stated in nanosecond units, where the minimal accuracy
/// required is a microsecond, the proper value for `low` would be 1000. If you're not sure,
/// use 1.
///
/// `high` is the highest value to be tracked by the histogram, and must be a
/// positive integer that is `>= (2 * low)`. If you're not sure, use `u64::max_value()`.
///
/// `sigfig` Specifies the number of significant figures to maintain. This is the number of
/// significant decimal digits to which the histogram will maintain value resolution and
/// separation. Must be in the range [0, 5]. If you're not sure, use 3. As `sigfig` increases,
/// memory usage grows exponentially, so choose carefully if there will be many histograms in
/// memory at once or if storage is otherwise a concern.
///
/// Returns an error if the provided parameters are invalid; see `CreationError`.
pub fn new_with_bounds(low: u64, high: u64, sigfig: u8) -> Result<Histogram<T>, CreationError> {
// Verify argument validity
if low < 1 {
return Err(CreationError::LowIsZero);
}
if low > u64::max_value() / 2 {
// avoid overflow in 2 * low
return Err(CreationError::LowExceedsMax);
}
if high < 2 * low {
return Err(CreationError::HighLessThanTwiceLow);
}
if sigfig > 5 {
return Err(CreationError::SigFigExceedsMax);
}
// Given a 3 decimal point accuracy, the expectation is obviously for "+/- 1 unit at 1000".
// It also means that it's "ok to be +/- 2 units at 2000". The "tricky" thing is that it is
// NOT ok to be +/- 2 units at 1999. Only starting at 2000. So internally, we need to
// maintain single unit resolution to 2x 10^decimal_points.
// largest value with single unit resolution, in [2, 200_000].
let largest = 2 * 10_u32.pow(u32::from(sigfig));
let unit_magnitude = (low as f64).log2().floor() as u8;
let unit_magnitude_mask = (1 << unit_magnitude) - 1;
// We need to maintain power-of-two sub_bucket_count (for clean direct indexing) that is
// large enough to provide unit resolution to at least
// largest_value_with_single_unit_resolution. So figure out
// largest_value_with_single_unit_resolution's nearest power-of-two (rounded up), and use
// that.
// In [1, 18]. 2^18 > 2 * 10^5 (the largest possible
// largest_value_with_single_unit_resolution)
let sub_bucket_count_magnitude = (f64::from(largest)).log2().ceil() as u8;
let sub_bucket_half_count_magnitude = sub_bucket_count_magnitude - 1;
let sub_bucket_count = 1_u32 << u32::from(sub_bucket_count_magnitude);
if unit_magnitude + sub_bucket_count_magnitude > 63 {
// sub_bucket_count entries can't be represented, with unit_magnitude applied, in a
// u64. Technically it still sort of works if their sum is 64: you can represent all
// but the last number in the shifted sub_bucket_count. However, the utility of such a
// histogram vs ones whose magnitude here fits in 63 bits is debatable, and it makes
// it harder to work through the logic. Sums larger than 64 are totally broken as
// leading_zero_count_base would go negative.
return Err(CreationError::CannotRepresentSigFigBeyondLow);
};
let sub_bucket_half_count = sub_bucket_count / 2;
// sub_bucket_count is always at least 2, so subtraction won't underflow
let sub_bucket_mask = (u64::from(sub_bucket_count) - 1) << unit_magnitude;
let mut h = Histogram {
auto_resize: false,
highest_trackable_value: high,
lowest_discernible_value: low,
significant_value_digits: sigfig,
// set by resize() below
bucket_count: 0,
sub_bucket_count,
// Establish leading_zero_count_base, used in bucket_index_of() fast path:
// subtract the bits that would be used by the largest value in bucket 0.
leading_zero_count_base: 64 - unit_magnitude - sub_bucket_count_magnitude,
sub_bucket_half_count_magnitude,
unit_magnitude,
sub_bucket_half_count,
sub_bucket_mask,
unit_magnitude_mask,
max_value: ORIGINAL_MAX,
min_non_zero_value: ORIGINAL_MIN,
total_count: 0,
// set by alloc() below
counts: Vec::new(),
};
// Already checked that high >= 2*low
h.resize(high)
.map_err(|_| CreationError::UsizeTypeTooSmall)?;
Ok(h)
}
/// Construct a `Histogram` with the same range settings as a given source histogram,
/// duplicating the source's start/end timestamps (but NOT its contents).
pub fn new_from<F: Counter>(source: &Histogram<F>) -> Histogram<T> {
let mut h = Self::new_with_bounds(
source.lowest_discernible_value,
source.highest_trackable_value,
source.significant_value_digits,
)
.expect("Using another histogram's parameters failed");
// h.start_time = source.start_time;
// h.end_time = source.end_time;
h.auto_resize = source.auto_resize;
h.counts.resize(source.distinct_values(), T::zero());
h
}
// ********************************************************************************************
// Recording samples.
// ********************************************************************************************
/// Record `value` in the histogram.
///
/// Returns an error if `value` exceeds the highest trackable value and auto-resize is
/// disabled.
pub fn record(&mut self, value: u64) -> Result<(), RecordError> {
self.record_n(value, T::one())
}
/// Record `value` in the histogram, clamped to the range of the histogram.
///
/// This method cannot fail, as any values that are too small or too large to be tracked will
/// automatically be clamed to be in range. Be aware that this *will* hide extreme outliers
/// from the resulting histogram without warning. Since the values are clamped, the histogram
/// will also not be resized to accomodate the value, even if auto-resize is enabled.
pub fn saturating_record(&mut self, value: u64) {
self.saturating_record_n(value, T::one())
}
/// Record multiple samples for a value in the histogram, adding to the value's current count.
///
/// `count` is the number of occurrences of this value to record.
///
/// Returns an error if `value` cannot be recorded; see `RecordError`.
pub fn record_n(&mut self, value: u64, count: T) -> Result<(), RecordError> {
self.record_n_inner(value, count, false)
}
/// Record multiple samples for a value in the histogram, each one clamped to the histogram's
/// range.
///
/// `count` is the number of occurrences of this value to record.
///
/// This method cannot fail, as values that are too small or too large to be recorded will
/// automatically be clamed to be in range. Be aware that this *will* hide extreme outliers
/// from the resulting histogram without warning. Since the values are clamped, the histogram
/// will also not be resized to accomodate the value, even if auto-resize is enabled.
pub fn saturating_record_n(&mut self, value: u64, count: T) {
self.record_n_inner(value, count, true).unwrap()
}
fn record_n_inner(&mut self, mut value: u64, count: T, clamp: bool) -> Result<(), RecordError> {
let recorded_without_resize = if let Some(c) = self.mut_at(value) {
*c = (*c).saturating_add(count);
true
} else {
false
};
if !recorded_without_resize {
if clamp {
value = if value > self.highest_trackable_value {
self.highest_trackable_value
} else {
// must be smaller than the lowest_discernible_value, since self.mut_at(value)
// failed, and it's not too large (per above).
self.lowest_discernible_value
};
let c = self
.mut_at(value)
.expect("unwrap must succeed since low and high are always representable");
*c = c.saturating_add(count);
} else if !self.auto_resize {
return Err(RecordError::ValueOutOfRangeResizeDisabled);
} else {
// We're growing the histogram, so new high > old high and is therefore >= 2x low.
self.resize(value)
.map_err(|_| RecordError::ResizeFailedUsizeTypeTooSmall)?;
self.highest_trackable_value =
self.highest_equivalent(self.value_for(self.last_index()));
{
let c = self.mut_at(value).expect("value should fit after resize");
// after resize, should be no possibility of overflow because this is a new slot
*c = (*c)
.checked_add(&count)
.expect("count overflow after resize");
}
}
}
self.update_min_max(value);
self.total_count = self.total_count.saturating_add(count.as_u64());
Ok(())
}
/// Record a value in the histogram while correcting for coordinated omission.
///
/// See `record_n_correct` for further documentation.
pub fn record_correct(&mut self, value: u64, interval: u64) -> Result<(), RecordError> {
self.record_n_correct(value, T::one(), interval)
}
/// Record multiple values in the histogram while correcting for coordinated omission.
///
/// To compensate for the loss of sampled values when a recorded value is larger than the
/// expected interval between value samples, this method will auto-generate and record an
/// additional series of decreasingly-smaller (down to `interval`) value records.
///
/// Note: This is a at-recording correction method, as opposed to the post-recording correction
/// method provided by `correct_clone`. The two methods are mutually exclusive, and only one of
/// the two should be be used on a given data set to correct for the same coordinated omission
/// issue.
///
/// Returns an error if `value` exceeds the highest trackable value and auto-resize is
/// disabled.
pub fn record_n_correct(
&mut self,
value: u64,
count: T,
interval: u64,
) -> Result<(), RecordError> {
self.record_n(value, count)?;
if interval == 0 {
return Ok(());
}
if value > interval {
// only enter loop when calculations will stay non-negative
let mut missing_value = value - interval;
while missing_value >= interval {
self.record_n_inner(missing_value, count, false)?;
missing_value -= interval;
}
}
Ok(())
}
// ********************************************************************************************
// Iterators
// ********************************************************************************************
/// Iterate through histogram values by quantile levels.
///
/// The iteration mechanic for this iterator may appear somewhat confusing, but it yields
/// fairly pleasing output. The iterator starts with a *quantile step size* of
/// `1/halving_period`. For every iteration, it yields a value whose quantile is that much
/// greater than the previously emitted quantile (i.e., initially 0, 0.1, 0.2, etc.). Once
/// `halving_period` values have been emitted, the quantile step size is halved, and the
/// iteration continues.
///
/// `ticks_per_half_distance` must be at least 1.
///
/// The iterator yields an `iterators::IterationValue` struct.
///
/// One subtlety of this iterator is that you can reach a value whose cumulative count yields
/// a quantile of 1.0 far sooner than the quantile iteration would reach 1.0. Consider a
/// histogram with count 1 at value 1, and count 1000000 at value 1000. At any quantile
/// iteration above `1/1000001 = 0.000000999`, iteration will have necessarily proceeded to
/// the index for value 1000, which has all the remaining counts, and therefore quantile (for
/// the value) of 1.0. This is why `IterationValue` has both `quantile()` and
/// `quantile_iterated_to()`. Additionally, to avoid a bunch of unhelpful iterations once
/// iteration has reached the last value with non-zero count, quantile iteration will skip
/// straight to 1.0 as well.
///
/// ```
/// use hdrhistogram::Histogram;
/// use hdrhistogram::iterators::IterationValue;
/// let mut hist = Histogram::<u64>::new_with_max(10000, 4).unwrap();
/// for i in 0..10000 {
/// hist += i;
/// }
///
/// let mut perc = hist.iter_quantiles(1);
///
/// println!("{:?}", hist.iter_quantiles(1).collect::<Vec<_>>());
///
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(hist.value_at_quantile(0.0001), 0.0001, 0.0, 1, 1))
/// );
/// // step size = 50
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(hist.value_at_quantile(0.5), 0.5, 0.5, 1, 5000 - 1))
/// );
/// // step size = 25
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(hist.value_at_quantile(0.75), 0.75, 0.75, 1, 2500))
/// );
/// // step size = 12.5
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(hist.value_at_quantile(0.875), 0.875, 0.875, 1, 1250))
/// );
/// // step size = 6.25
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(hist.value_at_quantile(0.9375), 0.9375, 0.9375, 1, 625))
/// );
/// // step size = 3.125
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(hist.value_at_quantile(0.9688), 0.9688, 0.96875, 1, 313))
/// );
/// // etc...
/// ```
pub fn iter_quantiles(
&self,
ticks_per_half_distance: u32,
) -> HistogramIterator<T, iterators::quantile::Iter<T>> {
// TODO upper bound on ticks per half distance? 2^31 ticks is not useful
iterators::quantile::Iter::new(self, ticks_per_half_distance)
}
/// Iterates through histogram values using linear value steps. The iteration is performed in
/// steps of size `step`, each one yielding the count for all values in the preceeding value
/// range of size `step`. The iterator terminates when all recorded histogram values are
/// exhausted.
///
/// The iterator yields an `iterators::IterationValue` struct.
///
/// ```
/// use hdrhistogram::Histogram;
/// use hdrhistogram::iterators::IterationValue;
/// let mut hist = Histogram::<u64>::new_with_max(1000, 3).unwrap();
/// hist += 100;
/// hist += 500;
/// hist += 800;
/// hist += 850;
///
/// let mut perc = hist.iter_linear(100);
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(99, hist.quantile_below(99), hist.quantile_below(99), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(199, hist.quantile_below(199), hist.quantile_below(199), 0, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(299, hist.quantile_below(299), hist.quantile_below(299), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(399, hist.quantile_below(399), hist.quantile_below(399), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(499, hist.quantile_below(499), hist.quantile_below(499), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(599, hist.quantile_below(599), hist.quantile_below(599), 0, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(699, hist.quantile_below(699), hist.quantile_below(699), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(799, hist.quantile_below(799), hist.quantile_below(799), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(899, hist.quantile_below(899), hist.quantile_below(899), 0, 2))
/// );
/// assert_eq!(perc.next(), None);
/// ```
pub fn iter_linear(&self, step: u64) -> HistogramIterator<T, iterators::linear::Iter<T>> {
iterators::linear::Iter::new(self, step)
}
/// Iterates through histogram values at logarithmically increasing levels. The iteration is
/// performed in steps that start at `start` and increase exponentially according to `exp`. The
/// iterator terminates when all recorded histogram values are exhausted.
///
/// The iterator yields an `iterators::IterationValue` struct.
///
/// ```
/// use hdrhistogram::Histogram;
/// use hdrhistogram::iterators::IterationValue;
/// let mut hist = Histogram::<u64>::new_with_max(1000, 3).unwrap();
/// hist += 100;
/// hist += 500;
/// hist += 800;
/// hist += 850;
///
/// let mut perc = hist.iter_log(1, 10.0);
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(0, hist.quantile_below(0), hist.quantile_below(0), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(9, hist.quantile_below(9), hist.quantile_below(9), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(99, hist.quantile_below(99), hist.quantile_below(99), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(999, hist.quantile_below(999), hist.quantile_below(999), 0, 4))
/// );
/// assert_eq!(perc.next(), None);
/// ```
pub fn iter_log(&self, start: u64, exp: f64) -> HistogramIterator<T, iterators::log::Iter<T>> {
iterators::log::Iter::new(self, start, exp)
}
/// Iterates through all recorded histogram values using the finest granularity steps supported
/// by the underlying representation. The iteration steps through all non-zero recorded value
/// counts, and terminates when all recorded histogram values are exhausted.
///
/// The iterator yields an `iterators::IterationValue` struct.
///
/// ```
/// use hdrhistogram::Histogram;
/// use hdrhistogram::iterators::IterationValue;
/// let mut hist = Histogram::<u64>::new_with_max(1000, 3).unwrap();
/// hist += 100;
/// hist += 500;
/// hist += 800;
/// hist += 850;
///
/// let mut perc = hist.iter_recorded();
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(100, hist.quantile_below(100), hist.quantile_below(100), 1, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(500, hist.quantile_below(500), hist.quantile_below(500), 1, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(800, hist.quantile_below(800), hist.quantile_below(800), 1, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(850, hist.quantile_below(850), hist.quantile_below(850), 1, 1))
/// );
/// assert_eq!(perc.next(), None);
/// ```
pub fn iter_recorded(&self) -> HistogramIterator<T, iterators::recorded::Iter> {
iterators::recorded::Iter::new(self)
}
/// Iterates through all histogram values using the finest granularity steps supported by the
/// underlying representation. The iteration steps through all possible unit value levels,
/// regardless of whether or not there were recorded values for that value level, and
/// terminates when all recorded histogram values are exhausted.
///
/// The iterator yields an `iterators::IterationValue` struct.
///
/// ```
/// use hdrhistogram::Histogram;
/// use hdrhistogram::iterators::IterationValue;
/// let mut hist = Histogram::<u64>::new_with_max(10, 1).unwrap();
/// hist += 1;
/// hist += 5;
/// hist += 8;
///
/// let mut perc = hist.iter_all();
/// assert_eq!(perc.next(), Some(IterationValue::new(0, 0.0, 0.0, 0, 0)));
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(1, hist.quantile_below(1), hist.quantile_below(1), 1, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(2, hist.quantile_below(2), hist.quantile_below(2), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(3, hist.quantile_below(3), hist.quantile_below(3), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(4, hist.quantile_below(4), hist.quantile_below(4), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(5, hist.quantile_below(5), hist.quantile_below(5), 1, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(6, hist.quantile_below(6), hist.quantile_below(6), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(7, hist.quantile_below(7), hist.quantile_below(7), 0, 0))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(8, hist.quantile_below(8), hist.quantile_below(8), 1, 1))
/// );
/// assert_eq!(
/// perc.next(),
/// Some(IterationValue::new(9, hist.quantile_below(9), hist.quantile_below(9), 0, 0))
/// );
/// assert_eq!(perc.next(), Some(IterationValue::new(10, 1.0, 1.0, 0, 0)));
/// ```
pub fn iter_all(&self) -> HistogramIterator<T, iterators::all::Iter> {
iterators::all::Iter::new(self)
}
// ********************************************************************************************
// Data statistics
// ********************************************************************************************
/// Get the lowest recorded value level in the histogram.
/// If the histogram has no recorded values, the value returned will be 0.
pub fn min(&self) -> u64 {
if self.total_count == 0
|| self
.count_at_index(0)
.expect("counts array must be non-empty")
!= T::zero()
{
0
} else {
self.min_nz()
}
}
/// Get the highest recorded value level in the histogram.
/// If the histogram has no recorded values, the value returned is undefined.
pub fn max(&self) -> u64 {
if self.max_value == ORIGINAL_MAX {
ORIGINAL_MAX
} else {
self.highest_equivalent(self.max_value)
}
}
/// Get the lowest recorded non-zero value level in the histogram.
/// If the histogram has no recorded values, the value returned is `u64::max_value()`.
pub fn min_nz(&self) -> u64 {
if self.min_non_zero_value == ORIGINAL_MIN {
ORIGINAL_MIN
} else {
self.lowest_equivalent(self.min_non_zero_value)
}
}
/// Determine if two values are equivalent with the histogram's resolution. Equivalent here
/// means that value samples recorded for any two equivalent values are counted in a common
/// total count.
pub fn equivalent(&self, value1: u64, value2: u64) -> bool {
self.lowest_equivalent(value1) == self.lowest_equivalent(value2)
}
/// Get the computed mean value of all recorded values in the histogram.
pub fn mean(&self) -> f64 {
if self.total_count == 0 {
return 0.0;
}
self.iter_recorded().fold(0.0_f64, |total, v| {
// TODO overflow?
total
+ self.median_equivalent(v.value_iterated_to()) as f64 * v.count_at_value().as_f64()
/ self.total_count as f64
})
}
/// Get the computed standard deviation of all recorded values in the histogram
pub fn stdev(&self) -> f64 {
if self.total_count == 0 {
return 0.0;
}
let mean = self.mean();
let geom_dev_tot = self.iter_recorded().fold(0.0_f64, |gdt, v| {
let dev = self.median_equivalent(v.value_iterated_to()) as f64 - mean;
gdt + (dev * dev) * v.count_since_last_iteration() as f64
});
(geom_dev_tot / self.total_count as f64).sqrt()
}
/// Get the value at a given percentile.
///
/// This is simply `value_at_quantile` multiplied by 100.0. For best floating-point precision,
/// use `value_at_quantile` directly.
pub fn value_at_percentile(&self, percentile: f64) -> u64 {
self.value_at_quantile(percentile / 100.0)
}
/// Get the value at a given quantile.
///
/// When the given quantile is > 0.0, the value returned is the value that the given
/// percentage of the overall recorded value entries in the histogram are either smaller than
/// or equivalent to. When the given quantile is 0.0, the value returned is the value that
/// all value entries in the histogram are either larger than or equivalent to.
///
/// Two values are considered "equivalent" if `self.equivalent` would return true.
///
/// If the total count of the histogram has exceeded `u64::max_value()`, this will return
/// inaccurate results.
pub fn value_at_quantile(&self, quantile: f64) -> u64 {
// Cap at 1.0
let quantile = if quantile > 1.0 { 1.0 } else { quantile };
let fractional_count = quantile * self.total_count as f64;
// If we're part-way into the next highest int, we should use that as the count
let mut count_at_quantile = fractional_count.ceil() as u64;
// Make sure we at least reach the first recorded entry
if count_at_quantile == 0 {
count_at_quantile = 1;
}
let mut total_to_current_index: u64 = 0;
for i in 0..self.counts.len() {
// Direct indexing is safe; indexes must reside in counts array.
// TODO overflow
total_to_current_index += self.counts[i].as_u64();
if total_to_current_index >= count_at_quantile {
let value_at_index = self.value_for(i);
return if quantile == 0.0 {
self.lowest_equivalent(value_at_index)
} else {
self.highest_equivalent(value_at_index)
};
}
}
0
}
/// Get the percentile of samples at and below a given value.
///
/// This is simply `quantile_below* multiplied by 100.0. For best floating-point precision, use
/// `quantile_below` directly.
pub fn percentile_below(&self, value: u64) -> f64 {
self.quantile_below(value) * 100.0
}
/// Get the quantile of samples at or below a given value.
///
/// The value returned is the quantile of values recorded in the histogram that are
/// smaller than or equivalent to the given value.
///
/// Two values are considered "equivalent" if `self.equivalent` would return true.
///
/// If the value is larger than the maximum representable value, it will be clamped to the
/// max representable value.
///
/// If the total count of the histogram has reached `u64::max_value()`, this will return
/// inaccurate results.
pub fn quantile_below(&self, value: u64) -> f64 {
if self.total_count == 0 {
return 1.0;
}
let target_index = self.index_for_or_last(value);
// TODO use RangeInclusive when it's stable to avoid checked_add
let end = target_index.checked_add(1).expect("usize overflow");
// count the smaller half
let (slice, lower) = if target_index < self.counts.len() / 2 {
(&self.counts[0..end], true)
} else {
(&self.counts[end..], false)
};
let iter = slice.iter().map(Counter::as_u64);
let total_to_current_index = if self.total_count < u64::MAX {
// if the total didn't saturate then any partial count shouldn't either.
// iter::sum optimizes better than the saturating_add fallback below
iter.sum::<u64>()
} else {
iter.fold(0u64, u64::saturating_add)
};
let total_to_current_index = if lower {
total_to_current_index
} else {
self.total_count - total_to_current_index
};
total_to_current_index.as_f64() / self.total_count as f64
}
/// Get the count of recorded values within a range of value levels (inclusive to within the
/// histogram's resolution).
///
/// `low` gives the lower value bound on the range for which to provide the recorded count.
/// Will be rounded down with `lowest_equivalent`. Similarly, `high` gives the higher value
/// bound on the range, and will be rounded up with `highest_equivalent`. The function returns
/// the total count of values recorded in the histogram within the value range that is `>=
/// lowest_equivalent(low)` and `<= highest_equivalent(high)`.
///
/// If either value is larger than the maximum representable value, it will be clamped to the
/// max representable value.
///
/// The count will saturate at u64::max_value().
pub fn count_between(&self, low: u64, high: u64) -> u64 {
let low_index = self.index_for_or_last(low);
let high_index = self.index_for_or_last(high);
// TODO use RangeInclusive when it's stable to avoid checked_add
(low_index..high_index.checked_add(1).expect("usize overflow"))
.map(|i| self.count_at_index(i).expect("index is <= last_index()"))
.fold(0_u64, |t, v| t.saturating_add(v.as_u64()))
}
/// Get the count of recorded values at a specific value (to within the histogram resolution at
/// the value level).
///
/// The count is computed across values recorded in the histogram that are within the value
/// range that is `>= lowest_equivalent(value)` and `<= highest_equivalent(value)`.
///
/// If the value is larger than the maximum representable value, it will be clamped to the
/// max representable value.
pub fn count_at(&self, value: u64) -> T {
self.count_at_index(self.index_for_or_last(value))
.expect("index is <= last_index()")
}
// ********************************************************************************************
// Public helpers
// ********************************************************************************************
/// Get the lowest value that is equivalent to the given value within the histogram's
/// resolution. Equivalent here means that value samples recorded for any two equivalent values
/// are counted in a common total count.
pub fn lowest_equivalent(&self, value: u64) -> u64 {
let bucket_index = self.bucket_for(value);
let sub_bucket_index = self.sub_bucket_for(value, bucket_index);
self.value_from_loc(bucket_index, sub_bucket_index)
}
/// Get the highest value that is equivalent to the given value within the histogram's
/// resolution. Equivalent here means that value samples recorded for any two equivalent values
/// are counted in a common total count.
///
/// Note that the return value is capped at `u64::max_value()`.
pub fn highest_equivalent(&self, value: u64) -> u64 {
if value == u64::max_value() {
u64::max_value()
} else {
self.next_non_equivalent(value) - 1
}
}
/// Get a value that lies in the middle (rounded up) of the range of values equivalent the
/// given value. Equivalent here means that value samples recorded for any two equivalent
/// values are counted in a common total count.
///
/// Note that the return value is capped at `u64::max_value()`.
pub fn median_equivalent(&self, value: u64) -> u64 {
// adding half of the range to the bottom of the range shouldn't overflow
self.lowest_equivalent(value)
.checked_add(self.equivalent_range(value) >> 1)
.expect("median equivalent should not overflow")
}
/// Get the next value that is *not* equivalent to the given value within the histogram's
/// resolution. Equivalent means that value samples recorded for any two equivalent values are
/// counted in a common total count.
///
/// Note that the return value is capped at `u64::max_value()`.
pub fn next_non_equivalent(&self, value: u64) -> u64 {
self.lowest_equivalent(value)
.saturating_add(self.equivalent_range(value))
}
/// Get the size (in value units) of the range of values that are equivalent to the given value
/// within the histogram's resolution. Equivalent here means that value samples recorded for
/// any two equivalent values are counted in a common total count.
pub fn equivalent_range(&self, value: u64) -> u64 {
let bucket_index = self.bucket_for(value);
1_u64 << (self.unit_magnitude + bucket_index)
}
/// Turn this histogram into a [`SyncHistogram`].
#[cfg(feature = "sync")]
pub fn into_sync(self) -> SyncHistogram<T> {
SyncHistogram::from(self)
}
// ********************************************************************************************
// Internal helpers
// ********************************************************************************************
/// Computes the matching histogram value for the given histogram bin.
///
/// `index` must be no larger than `u32::max_value()`; no possible histogram uses that much
/// storage anyway. So, any index that comes from a valid histogram location will be safe.
///
/// If the index is for a position beyond what this histogram is configured for, the correct
/// corresponding value will be returned, but of course it won't have a corresponding count.
///
/// If the index maps to a value beyond `u64::max_value()`, the result will be garbage.
fn value_for(&self, index: usize) -> u64 {
// Dividing by sub bucket half count will yield 1 in top half of first bucket, 2 in
// in the top half (i.e., the only half that's used) of the 2nd bucket, etc, so subtract 1
// to get 0-indexed bucket indexes. This will be -1 for the bottom half of the first bucket.
let mut bucket_index = (index >> self.sub_bucket_half_count_magnitude) as isize - 1;
// Calculate the remainder of dividing by sub_bucket_half_count, shifted into the top half
// of the corresponding bucket. This will (temporarily) map indexes in the lower half of
// first bucket into the top half.
// The subtraction won't underflow because half count is always at least 1.
// TODO precalculate sub_bucket_half_count mask if benchmarks show improvement
let mut sub_bucket_index = ((index.to_u32().expect("index must fit in u32"))
& (self.sub_bucket_half_count - 1))
+ self.sub_bucket_half_count;
if bucket_index < 0 {
// lower half of first bucket case; move sub bucket index back
sub_bucket_index -= self.sub_bucket_half_count;
bucket_index = 0;
}
self.value_from_loc(bucket_index as u8, sub_bucket_index)
}
/// Returns count at index, or None if out of bounds
fn count_at_index(&self, index: usize) -> Option<T> {
self.counts.get(index).cloned()
}
/// Returns an error if the index doesn't exist.
#[cfg(feature = "serialization")]
fn set_count_at_index(&mut self, index: usize, count: T) -> Result<(), ()> {
let r = self.counts.get_mut(index).ok_or(())?;
*r = count;
Ok(())
}
/// Compute the lowest (and therefore highest precision) bucket index whose sub-buckets can
/// represent the value.
#[inline]
fn bucket_for(&self, value: u64) -> u8 {
// Calculates the number of powers of two by which the value is greater than the biggest
// value that fits in bucket 0. This is the bucket index since each successive bucket can
// hold a value 2x greater. The mask maps small values to bucket 0.
// Will not underflow because sub_bucket_mask caps the leading zeros to no more than
// leading_zero_count_base.
self.leading_zero_count_base - (value | self.sub_bucket_mask).leading_zeros() as u8
}
/// Compute the position inside a bucket at which the given value should be recorded, indexed
/// from position 0 in the bucket (in the first half, which is not used past the first bucket).
/// For bucket_index > 0, the result will be in the top half of the bucket.
#[inline]
fn sub_bucket_for(&self, value: u64, bucket_index: u8) -> u32 {
// Since bucket_index is simply how many powers of 2 greater value is than what will fit in
// bucket 0 (that is, what will fit in [0, sub_bucket_count)), we shift off that many
// powers of two, and end up with a number in [0, sub_bucket_count).
// For bucket_index 0, this is just value. For bucket index k > 0, we know value won't fit
// in bucket (k - 1) by definition, so this calculation won't end up in the lower half of
// [0, sub_bucket_count) because that would mean it would also fit in bucket (k - 1).
// As unit magnitude grows, the maximum possible bucket index should shrink because it is
// based off of sub_bucket_mask, so this shouldn't lead to an overlarge shift.
(value >> (bucket_index + self.unit_magnitude)) as u32
}
/// Compute the value corresponding to the provided bucket and sub bucket indices.
/// The indices given must map to an actual u64; providing contrived indices that would map to
/// a value larger than u64::max_value() will yield garbage.
#[inline]
fn value_from_loc(&self, bucket_index: u8, sub_bucket_index: u32) -> u64 {
// Sum won't overflow; bucket_index and unit_magnitude are both <= 64.
// However, the resulting shift may overflow given bogus input, e.g. if unit magnitude is
// large and the input sub_bucket_index is for an entry in the counts index that shouldn't
// be used (because this calculation will overflow).
u64::from(sub_bucket_index) << (bucket_index + self.unit_magnitude)
}
/// Find the number of buckets needed such that `value` is representable.
fn buckets_to_cover(&self, value: u64) -> u8 {
// Shift won't overflow because sub_bucket_magnitude + unit_magnitude <= 63.
// the k'th bucket can express from 0 * 2^k to sub_bucket_count * 2^k in units of 2^k
let mut smallest_untrackable_value =
u64::from(self.sub_bucket_count) << self.unit_magnitude;
// always have at least 1 bucket
let mut buckets_needed = 1;
while smallest_untrackable_value <= value {
if smallest_untrackable_value > u64::max_value() / 2 {
// next shift will overflow, meaning that bucket could represent values up to ones
// greater than i64::max_value, so it's the last bucket
return buckets_needed + 1;
}
smallest_untrackable_value <<= 1;
buckets_needed += 1;
}
buckets_needed
}
/// Compute the actual number of bins to use for the given bucket count (that is, including the
/// sub-buckets within each top-level bucket).
///
/// If we have `N` such that `sub_bucket_count * 2^N > high`, we need storage for `N+1` buckets,
/// each with enough slots to hold the top half of the `sub_bucket_count` (the lower half is
/// covered by previous buckets), and the +1 being used for the lower half of the 0'th bucket.
/// Or, equivalently, we need 1 more bucket to capture the max value if we consider the
/// sub-bucket length to be halved.
fn num_bins(&self, number_of_buckets: u8) -> u32 {
(u32::from(number_of_buckets) + 1) * (self.sub_bucket_half_count)
}
/// Resize the underlying counts array such that it can cover the given `high` value.
///
/// `high` must be at least 2x the lowest discernible value.
///
/// Returns an error if the new size cannot be represented as a `usize`.
fn resize(&mut self, high: u64) -> Result<(), UsizeTypeTooSmall> {
// will not overflow because lowest_discernible_value must be at least as small as
// u64::max_value() / 2 to have passed initial validation
assert!(
high >= 2 * self.lowest_discernible_value,
"highest trackable value must be >= (2 * lowest discernible value)"
);
// establish counts array length:
let buckets_needed = self.buckets_to_cover(high);
let len = self
.num_bins(buckets_needed)
.to_usize()
.ok_or(UsizeTypeTooSmall)?;
// establish exponent range needed to support the trackable value with no overflow:
self.bucket_count = buckets_needed;
// establish the new highest trackable value:
self.highest_trackable_value = high;
// expand counts to also hold the new counts
self.counts.resize(len, T::zero());
Ok(())
}
/// Set internally tracked max_value to new value if new value is greater than current one.
fn update_max(&mut self, value: u64) {
let internal_value = value | self.unit_magnitude_mask; // Max unit-equivalent value
if internal_value > self.max_value {
self.max_value = internal_value;
}
}
/// Set internally tracked min_non_zero_value to new value if new value is smaller than current
/// one.
fn update_min(&mut self, value: u64) {
if value <= self.unit_magnitude_mask {
return; // Unit-equivalent to 0.
}
let internal_value = value & !self.unit_magnitude_mask; // Min unit-equivalent value
if internal_value < self.min_non_zero_value {
self.min_non_zero_value = internal_value;
}
}
fn update_min_max(&mut self, value: u64) {
if value > self.max_value {
self.update_max(value);
}
if value < self.min_non_zero_value && value != 0 {
self.update_min(value);
}
}
fn reset_max(&mut self, max: u64) {
self.max_value = max | self.unit_magnitude_mask; // Max unit-equivalent value
}
fn reset_min(&mut self, min: u64) {
let internal_value = min & !self.unit_magnitude_mask; // Min unit-equivalent value
self.min_non_zero_value = if min == u64::max_value() {
min
} else {
internal_value
};
}
/// Recalculate min, max, total_count.
fn restat(&mut self, length_to_scan: usize) {
self.reset_max(ORIGINAL_MAX);
self.reset_min(ORIGINAL_MIN);
let mut restat_state = RestatState::new();
assert!(length_to_scan <= self.counts.len());
for i in 0..length_to_scan {
// Direct indexing safe because of assert above
let count = self.counts[i];
if count != T::zero() {
restat_state.on_nonzero_count(i, count);
}
}
restat_state.update_histogram(self);
}
}
/// Stores the state to calculate the max, min, and total count for a histogram by iterating across
/// the counts.
struct RestatState<T: Counter> {
max_index: Option<usize>,
min_index: Option<usize>,
total_count: u64,
phantom: std::marker::PhantomData<T>,
}
impl<T: Counter> RestatState<T> {
fn new() -> RestatState<T> {
RestatState {
max_index: None,
min_index: None,
total_count: 0,
phantom: std::marker::PhantomData,
}
}
/// Should be called on every non-zero count found
#[inline]
fn on_nonzero_count(&mut self, index: usize, count: T) {
self.total_count = self.total_count.saturating_add(count.as_u64());
self.max_index = Some(index);
if self.min_index.is_none() && index != 0 {
self.min_index = Some(index);
}
}
/// Write updated min, max, total_count into histogram.
/// Called once all counts have been iterated across.
fn update_histogram(self, h: &mut Histogram<T>) {
if let Some(max_i) = self.max_index {
let max = h.highest_equivalent(h.value_for(max_i));
h.update_max(max);
}
if let Some(min_i) = self.min_index {
let min = h.value_for(min_i);
h.update_min(min);
}
h.total_count = self.total_count;
}
}
// ********************************************************************************************
// Trait implementations
// ********************************************************************************************
// make it more ergonomic to add and subtract histograms
impl<'a, T: Counter> AddAssign<&'a Histogram<T>> for Histogram<T> {
fn add_assign(&mut self, source: &'a Histogram<T>) {
self.add(source).unwrap();
}
}
impl<T: Counter> AddAssign<Histogram<T>> for Histogram<T> {
fn add_assign(&mut self, source: Histogram<T>) {
self.add(&source).unwrap();
}
}
impl<T: Counter> Add<Histogram<T>> for Histogram<T> {
type Output = Histogram<T>;
fn add(mut self, rhs: Histogram<T>) -> Self::Output {
self += rhs;
self
}
}
impl<'a, T: Counter> Add<&'a Histogram<T>> for Histogram<T> {
type Output = Histogram<T>;
fn add(mut self, rhs: &'a Histogram<T>) -> Self::Output {
self += rhs;
self
}
}
use std::iter;
impl<T: Counter> iter::Sum for Histogram<T> {
fn sum<I>(mut iter: I) -> Self
where
I: Iterator<Item = Self>,
{
match iter.next() {
Some(mut first) => {
for h in iter {
first += h;
}
first
}
None => Histogram::new(3).expect("histograms with sigfig=3 should always work"),
}
}
}
impl<'a, T: Counter> SubAssign<&'a Histogram<T>> for Histogram<T> {
fn sub_assign(&mut self, other: &'a Histogram<T>) {
self.subtract(other).unwrap();
}
}
impl<T: Counter> SubAssign<Histogram<T>> for Histogram<T> {
fn sub_assign(&mut self, source: Histogram<T>) {
self.subtract(&source).unwrap();
}
}
impl<T: Counter> Sub<Histogram<T>> for Histogram<T> {
type Output = Histogram<T>;
fn sub(mut self, rhs: Histogram<T>) -> Self::Output {
self -= rhs;
self
}
}
impl<'a, T: Counter> Sub<&'a Histogram<T>> for Histogram<T> {
type Output = Histogram<T>;
fn sub(mut self, rhs: &'a Histogram<T>) -> Self::Output {
self -= rhs;
self
}
}
// make it more ergonomic to record samples
impl<T: Counter> AddAssign<u64> for Histogram<T> {
fn add_assign(&mut self, value: u64) {
self.record(value).unwrap();
}
}
// allow comparing histograms
impl<T: Counter, F: Counter> PartialEq<Histogram<F>> for Histogram<T>
where
T: PartialEq<F>,
{
fn eq(&self, other: &Histogram<F>) -> bool {
if self.lowest_discernible_value != other.lowest_discernible_value
|| self.significant_value_digits != other.significant_value_digits
{
return false;
}
if self.total_count != other.total_count {
return false;
}
if self.max() != other.max() {
return false;
}
if self.min_nz() != other.min_nz() {
return false;
}
(0..self.counts.len()).all(|i| {
self.counts[i]
== match other.count_at_index(i) {
Some(c) => c,
None => return false,
}
})
}
}
// /**
// * Indicate whether or not the histogram is capable of supporting auto-resize functionality.
// * Note that this is an indication that enabling auto-resize by calling set_auto_resize() is
// * allowed, and NOT that the histogram will actually auto-resize. Use is_auto_resize() to
// * determine if the histogram is in auto-resize mode.
// * @return auto_resize setting
// */
// public boolean supports_auto_resize() { return true; }
// TODO: shift
// TODO: hash
#[path = "tests/tests.rs"]
#[cfg(test)]
mod tests;
mod core;
pub mod errors;
#[cfg(feature = "serialization")]
pub mod serialization;
pub use self::core::counter::*;
pub use errors::*;
#[cfg(feature = "sync")]
pub mod sync;
#[cfg(feature = "sync")]
pub use sync::SyncHistogram;