1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
use std::collections::{BTreeMap, BTreeSet};
use ahash::HashSet;
use itertools::Itertools;
use nohash_hasher::IntMap;
use re_data_store::{StoreDiff, StoreDiffKind, StoreEvent, StoreSubscriber};
use re_log_types::{
ComponentPath, EntityPath, EntityPathHash, EntityPathPart, RowId, TimeInt, TimePoint, Timeline,
};
use re_types_core::{ComponentName, Loggable};
// Used all over in docstrings.
#[allow(unused_imports)]
use re_data_store::DataStore;
use crate::TimeHistogramPerTimeline;
// ----------------------------------------------------------------------------
/// A recursive, manually updated [`re_data_store::StoreSubscriber`] that maintains the entity hierarchy.
///
/// The tree contains a list of subtrees, and so on recursively.
pub struct EntityTree {
/// Full path prefix to the root of this (sub)tree.
pub path: EntityPath,
/// Direct descendants of this (sub)tree.
pub children: BTreeMap<EntityPathPart, EntityTree>,
/// Information about this specific entity (excluding children).
pub entity: EntityInfo,
/// Info about this subtree, including all children, recursively.
pub subtree: SubtreeInfo,
}
// NOTE: This is only to let people know that this is in fact a [`StoreSubscriber`], so they A) don't try
// to implement it on their own and B) don't try to register it.
impl StoreSubscriber for EntityTree {
fn name(&self) -> String {
"rerun.store_subscribers.EntityTree".into()
}
fn as_any(&self) -> &dyn std::any::Any {
self
}
fn as_any_mut(&mut self) -> &mut dyn std::any::Any {
self
}
#[allow(clippy::unimplemented)]
fn on_events(&mut self, _events: &[StoreEvent]) {
unimplemented!(
r"EntityTree view is maintained manually, see `EntityTree::on_store_{{additions|deletions}}`"
);
}
}
/// Information about this specific entity (excluding children).
#[derive(Default)]
pub struct EntityInfo {
/// Book-keeping around whether we should clear fields when data is added.
clears: BTreeMap<RowId, TimePoint>,
/// Flat time histograms for each component of this [`EntityTree`].
///
/// Keeps track of the _number of times a component is logged_ per time per timeline, only for
/// this specific [`EntityTree`].
/// A component logged twice at the same timestamp is counted twice.
///
/// ⚠ Auto-generated instance keys are _not_ accounted for. ⚠
pub components: BTreeMap<ComponentName, TimeHistogramPerTimeline>,
}
/// Info about stuff at a given [`EntityPath`], including all of its children, recursively.
#[derive(Default)]
pub struct SubtreeInfo {
/// Book-keeping around whether we should clear recursively when data is added.
clears: BTreeMap<RowId, TimePoint>,
/// Recursive time histogram for this [`EntityTree`].
///
/// Keeps track of the _number of components logged_ per time per timeline, recursively across
/// all of the [`EntityTree`]'s children.
/// A component logged twice at the same timestamp is counted twice.
///
/// ⚠ Auto-generated instance keys are _not_ accounted for. ⚠
pub time_histogram: TimeHistogramPerTimeline,
/// Number of bytes used by all arrow data
data_bytes: u64,
}
impl SubtreeInfo {
/// Assumes the event has been filtered to be part of this subtree.
fn on_event(&mut self, event: &StoreEvent) {
use re_types_core::SizeBytes as _;
match event.kind {
StoreDiffKind::Addition => {
self.time_histogram
.add(&event.times, event.num_components() as _);
for cell in event.cells.values() {
self.data_bytes += cell.total_size_bytes();
}
}
StoreDiffKind::Deletion => {
self.time_histogram
.remove(&event.timepoint(), event.num_components() as _);
for cell in event.cells.values() {
let removed_bytes = cell.total_size_bytes();
self.data_bytes =
self.data_bytes
.checked_sub(removed_bytes)
.unwrap_or_else(|| {
re_log::debug!(
store_id = %event.store_id,
entity_path = %event.diff.entity_path,
current = self.data_bytes,
removed = removed_bytes,
"book keeping underflowed"
);
u64::MIN
});
}
}
}
}
/// Number of bytes used by all arrow data in this tree (including their schemas, but otherwise ignoring book-keeping overhead).
#[inline]
pub fn data_bytes(&self) -> u64 {
self.data_bytes
}
}
/// Maintains an optimized representation of a batch of [`StoreEvent`]s specifically designed to
/// accelerate garbage collection of [`EntityTree`]s.
///
/// See [`EntityTree::on_store_deletions`].
#[derive(Default)]
pub struct CompactedStoreEvents {
/// What rows were deleted?
pub row_ids: HashSet<RowId>,
/// What time points were deleted for each entity+timeline+component?
pub temporal: IntMap<EntityPathHash, IntMap<Timeline, IntMap<ComponentName, Vec<TimeInt>>>>,
/// For each entity+component, how many timeless entries were deleted?
pub timeless: IntMap<EntityPathHash, IntMap<ComponentName, u64>>,
}
impl CompactedStoreEvents {
pub fn new(store_events: &[&StoreEvent]) -> Self {
let mut this = CompactedStoreEvents {
row_ids: store_events.iter().map(|event| event.row_id).collect(),
temporal: Default::default(),
timeless: Default::default(),
};
for event in store_events {
if event.is_static() {
let per_component = this.timeless.entry(event.entity_path.hash()).or_default();
for component_name in event.cells.keys() {
*per_component.entry(*component_name).or_default() +=
event.delta().unsigned_abs();
}
} else {
for &(timeline, time) in &event.times {
let per_timeline = this.temporal.entry(event.entity_path.hash()).or_default();
let per_component = per_timeline.entry(timeline).or_default();
for component_name in event.cells.keys() {
per_component.entry(*component_name).or_default().push(time);
}
}
}
}
this
}
}
/// Cascaded clears that need be to applied to the [`DataStore`] as a result of modifying the [`EntityTree`].
///
/// When an [`EntityTree`] gets updated with new data, two cascading effects might happen:
///
/// 1. If the data contains a `Clear` component, then inserting it will trigger an immediate clear
/// at this specific timepoint, that can affect an arbitrary number of components and, if the `Clear`
/// is recursive, even an arbitrary number of entity paths.
/// That `Clear` then lives on and might affect data added later on, which leads us to
/// side-effect #2 described below.
///
/// 2. If data is inserted at an entity path that is under the influence of a previously logged
/// `Clear` component, then the insertion will trigger a pending clear for all components at
/// that path.
///
/// `Clear` components themselves are not affected by clears.
#[derive(Debug, Clone, Default)]
pub struct ClearCascade {
/// [`ComponentPath`]s that should be cleared as a result of the cascade.
///
/// Keep in mind: these are the [`RowId`]s of the `Clear` components that triggered the
/// cascades, they are therefore not unique and, by definition, illegal!
pub to_be_cleared: BTreeMap<RowId, BTreeMap<EntityPath, (TimePoint, BTreeSet<ComponentPath>)>>,
}
impl ClearCascade {
pub fn is_empty(&self) -> bool {
let Self { to_be_cleared } = self;
to_be_cleared.is_empty()
}
}
impl EntityTree {
pub fn root() -> Self {
Self::new(EntityPath::root(), Default::default())
}
pub fn new(path: EntityPath, recursive_clears: BTreeMap<RowId, TimePoint>) -> Self {
Self {
path,
children: Default::default(),
entity: EntityInfo {
clears: recursive_clears.clone(),
..Default::default()
},
subtree: SubtreeInfo {
clears: recursive_clears,
..Default::default()
},
}
}
/// Has no child entities.
pub fn is_leaf(&self) -> bool {
self.children.is_empty()
}
pub fn num_children_and_fields(&self) -> usize {
self.children.len() + self.entity.components.len()
}
/// Number of timeless messages in this tree, or any child, recursively.
pub fn num_static_messages_recursive(&self) -> u64 {
self.subtree.time_histogram.num_static_messages()
}
pub fn time_histogram_for_component(
&self,
timeline: &Timeline,
component_name: impl Into<ComponentName>,
) -> Option<&crate::TimeHistogram> {
self.entity
.components
.get(&component_name.into())
.and_then(|per_timeline| per_timeline.get(timeline))
}
/// Updates the [`EntityTree`] by applying a batch of [`StoreEvent`]s.
///
/// Returns an [`ClearCascade`] that describes the cascading side-effects to be applied to the
/// [`DataStore`] as a result, if any.
/// See [`ClearCascade`]'s documentation for more information.
///
/// Only reacts to additions (`event.kind == StoreDiffKind::Addition`).
pub fn on_store_additions(&mut self, events: &[StoreEvent]) -> ClearCascade {
re_tracing::profile_function!();
let mut clear_cascade = ClearCascade::default();
for event in events.iter().filter(|e| e.kind == StoreDiffKind::Addition) {
self.on_store_addition(event, &mut clear_cascade);
}
clear_cascade
}
fn on_store_addition(&mut self, event: &StoreEvent, clear_cascade: &mut ClearCascade) {
re_tracing::profile_function!();
let entity_path = &event.diff.entity_path;
// Book-keeping for each level in the hierarchy:
let mut tree = self;
tree.subtree.on_event(event);
for (i, part) in entity_path.iter().enumerate() {
tree = tree.children.entry(part.clone()).or_insert_with(|| {
EntityTree::new(
entity_path.as_slice()[..=i].into(),
tree.subtree.clears.clone(),
)
});
tree.subtree.on_event(event);
}
// Finally book-keeping for the entity where data was actually added:
tree.on_added_data(clear_cascade, &event.diff);
}
/// Handles the addition of new data into the tree.
///
/// Updates the given [`ClearCascade`] with immediate and pending clears as a
/// result of the operation.
fn on_added_data(&mut self, clear_cascade: &mut ClearCascade, store_diff: &StoreDiff) {
for (component_name, cell) in &store_diff.cells {
let component_path =
ComponentPath::new(store_diff.entity_path.clone(), *component_name);
let mut pending_clears = vec![];
let per_component = self
.entity
.components
.entry(component_path.component_name)
.or_insert_with(|| {
// If we needed to create a new leaf to hold this data, we also want to
// insert all of the historical pending clear operations.
pending_clears = self.entity.clears.clone().into_iter().collect_vec();
Default::default()
});
per_component.add(&store_diff.times, 1);
// Is the newly added component under the influence of previously logged `Clear`
// component?
//
// If so, this is one of two cascading side-effects that happen when updating the entity
// tree: a pending clear.
//
// We need to inform the [`DataStore`] that it should insert a cleared batch for the
// current component, _using the Timepoint and RowId of the previously logged clear_.
//
// ## RowId duplication
//
// We want to insert new data (empty cells) using an old RowId (specifically, the RowId
// of the original insertion that was used to register the pending clear in the first
// place).
// By definition, this is illegal: RowIds are unique.
//
// On the other hand, the GC process is driven by RowId order, which means we must make
// sure that the empty cell we're inserting uses a RowId with a similar timestamp as the
// one used in the original `Clear` component cell, so they roughly get GC'd at the same time.
//
// This is fine, the insertion retry mechanism will make sure we get a unique RowId
// that is still close to this one.
for (pending_row_id, pending_timepoint) in pending_clears {
let per_entity = clear_cascade
.to_be_cleared
.entry(pending_row_id)
.or_default();
let (timepoint, component_paths) = per_entity
.entry(store_diff.entity_path.clone())
.or_default();
*timepoint = pending_timepoint.union_max(timepoint);
component_paths.insert(component_path.clone());
}
use re_types_core::components::ClearIsRecursive;
if cell.component_name() == ClearIsRecursive::name() {
let is_recursive = cell
.try_to_native_mono::<ClearIsRecursive>()
.unwrap()
.map_or(false, |settings| settings.0);
self.on_added_clear(clear_cascade, store_diff, is_recursive);
}
}
}
/// Handles the addition of new `Clear` component into the tree.
///
/// Updates the given [`ClearCascade`] as a result of the operation.
///
/// Additional pending clear operations will be stored in the tree for future
/// insertion.
fn on_added_clear(
&mut self,
clear_cascade: &mut ClearCascade,
store_diff: &StoreDiff,
is_recursive: bool,
) {
use re_types_core::{archetypes::Clear, components::ClearIsRecursive, Archetype as _};
re_tracing::profile_function!();
fn filter_out_clear_components(comp_name: &ComponentName) -> bool {
let is_clear_component = [
Clear::indicator().name(), //
ClearIsRecursive::name(), //
]
.contains(comp_name);
!is_clear_component
}
fn clear_tree(
tree: &mut EntityTree,
is_recursive: bool,
row_id: RowId,
timepoint: TimePoint,
) -> impl IntoIterator<Item = ComponentPath> + '_ {
if is_recursive {
// Track that any future children need a Null at the right timepoint when added.
let cur_timepoint = tree.subtree.clears.entry(row_id).or_default();
*cur_timepoint = timepoint.clone().union_max(cur_timepoint);
}
// Track that any future fields need a Null at the right timepoint when added.
let cur_timepoint = tree.entity.clears.entry(row_id).or_default();
*cur_timepoint = timepoint.union_max(cur_timepoint);
// For every existing field return a clear event.
tree.entity
.components
.keys()
// Don't clear `Clear` components, or we'd end up with recursive cascades!
.filter(|comp_name| filter_out_clear_components(comp_name))
.map(|component_name| ComponentPath::new(tree.path.clone(), *component_name))
}
let mut cleared_paths = BTreeSet::new();
if is_recursive {
let mut stack = vec![];
stack.push(self);
while let Some(next) = stack.pop() {
cleared_paths.extend(clear_tree(
next,
is_recursive,
store_diff.row_id,
store_diff.timepoint(),
));
stack.extend(next.children.values_mut().collect::<Vec<&mut Self>>());
}
} else {
cleared_paths.extend(clear_tree(
self,
is_recursive,
store_diff.row_id,
store_diff.timepoint(),
));
}
// Are there previous logged components under the influence of the newly logged `Clear`
// component?
//
// If so, this is one of two cascading side-effects that happen when updating the entity
// tree: an immediate clear.
//
// We need to inform the [`DataStore`] that it should insert a cleared batch for each of
// these components, _using the Timepoint and RowId of the newly logged clear_.
//
// ## RowId duplication
//
// We want to insert new data (empty cells) using a single RowId (specifically, the RowId
// that was used to log this new `Clear` component.
// By definition, this is illegal: RowIds are unique.
//
// On the other hand, the GC process is driven by RowId order, which means we must make
// sure that the empty cell we're inserting uses a RowId with a similar timestamp as the
// one used by the `Clear` component cell, so they roughly get GC'd at the same time.
//
// This is fine, the insertion retry mechanism will make sure we get a unique RowId
// that is still close to this one.
for component_path in cleared_paths {
let per_entity = clear_cascade
.to_be_cleared
.entry(store_diff.row_id)
.or_default();
let (timepoint, component_paths) = per_entity
.entry(component_path.entity_path().clone())
.or_default();
*timepoint = store_diff.timepoint().union_max(timepoint);
component_paths.insert(component_path.clone());
}
}
/// Updates the [`EntityTree`] by applying a batch of [`StoreEvent`]s.
///
/// Returns an [`ClearCascade`] that describes a list of deletions that should be applied
/// to the store as a result.
///
/// Only reacts to additions (`event.kind == StoreDiffKind::Addition`).
pub fn on_store_deletions(
&mut self,
store_events: &[&StoreEvent],
compacted: &CompactedStoreEvents,
) {
re_tracing::profile_function!();
let Self {
path,
children,
entity,
subtree,
} = self;
// Only keep events relevant to this branch of the tree.
let subtree_events = store_events
.iter()
.filter(|e| e.entity_path.starts_with(path))
.copied() // NOTE: not actually copying, just removing the superfluous ref layer
.collect_vec();
{
re_tracing::profile_scope!("entity");
{
re_tracing::profile_scope!("clears");
entity
.clears
.retain(|row_id, _| !compacted.row_ids.contains(row_id));
}
re_tracing::profile_scope!("components");
for event in subtree_events.iter().filter(|e| &e.entity_path == path) {
for component_name in event.cells.keys() {
if let Some(histo) = entity.components.get_mut(component_name) {
histo.remove(&event.timepoint(), 1);
if histo.is_empty() {
entity.components.remove(component_name);
}
}
}
}
}
{
re_tracing::profile_scope!("subtree");
{
re_tracing::profile_scope!("clears");
subtree
.clears
.retain(|row_id, _| !compacted.row_ids.contains(row_id));
}
re_tracing::profile_scope!("on_event");
for &event in &subtree_events {
subtree.on_event(event);
}
}
children.retain(|_, child| {
child.on_store_deletions(&subtree_events, compacted);
child.num_children_and_fields() > 0
});
}
pub fn subtree(&self, path: &EntityPath) -> Option<&Self> {
fn subtree_recursive<'tree>(
this: &'tree EntityTree,
path: &[EntityPathPart],
) -> Option<&'tree EntityTree> {
match path {
[] => Some(this),
[first, rest @ ..] => subtree_recursive(this.children.get(first)?, rest),
}
}
subtree_recursive(self, path.as_slice())
}
// Invokes visitor for `self` and all children recursively.
pub fn visit_children_recursively(&self, visitor: &mut impl FnMut(&EntityPath, &EntityInfo)) {
visitor(&self.path, &self.entity);
for child in self.children.values() {
child.visit_children_recursively(visitor);
}
}
}