1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
use super::super::dcel::EdgeEntry;
use super::super::math;
use super::handle_defs::*;
use super::iterators::CircularIterator;
use super::iterators::NextBackFn;
use super::public_handles::*;
use crate::CdtEdge;
use crate::{HasPosition, LineSideInfo, Point2};
use core::cmp::Ordering;
use core::fmt::Debug;
use core::hash::{Hash, Hasher};
use num_traits::{Float, One};

// Debug implementations
impl<'a, V, DE, UE, F> core::fmt::Debug for VertexHandle<'a, V, DE, UE, F> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(f, "VertexHandle({:?})", self.handle.index())
    }
}

impl<'a, V, DE, UE, F> Debug for DirectedEdgeHandle<'a, V, DE, UE, F> {
    fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
        write!(
            f,
            "DirectedEdgeHandle - id: {:?} ({:?} -> {:?})",
            self.handle.index(),
            self.from().fix(),
            self.to().fix()
        )
    }
}

impl<'a, V, DE, UE, F> core::fmt::Debug for UndirectedEdgeHandle<'a, V, DE, UE, F> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> ::core::fmt::Result {
        let [v0, v1] = self.vertices();
        write!(
            f,
            "UndirectedEdgeHandle - id: {:?} ({:?} <-> {:?})",
            self.handle.index(),
            v0.fix(),
            v1.fix(),
        )
    }
}

impl<'a, V, DE, UE, F> core::fmt::Debug for FaceHandle<'a, PossiblyOuterTag, V, DE, UE, F> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> ::core::fmt::Result {
        if let Some(inner) = self.as_inner() {
            inner.fmt(f)
        } else {
            write!(f, "OuterFace")
        }
    }
}

impl<'a, V, DE, UE, F> core::fmt::Debug for FaceHandle<'a, InnerTag, V, DE, UE, F> {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> ::core::fmt::Result {
        let [v0, v1, v2] = self.vertices();
        write!(
            f,
            "FaceHandle - id: {:?} ({:?}, {:?}, {:?})",
            self.handle.index(),
            v0.fix().index(),
            v1.fix().index(),
            v2.fix().index(),
        )
    }
}

impl FixedDirectedEdgeHandle {
    #[inline]
    pub(in super::super) fn new_normalized(index: usize) -> Self {
        Self::new(index << 1)
    }

    /// Returns if this edge is the normalized edge of a directed edge pair.
    ///
    /// For every directed edge pair, one edge is marked as the normalized edge. This information
    /// is used to hook up a directed edge handle with it's correct half edge storage.
    #[inline]
    pub(in super::super) fn is_normalized(self) -> bool {
        // Use the last bit to store if this edge is normalized
        self.index() & 0x1 == 0x0
    }

    #[inline]
    pub(in super::super) fn normalize_index(self) -> usize {
        self.index() & 0x1
    }

    /// Returns this edge with its direction reversed.
    ///
    /// If this edge points from `v0` to `v1`, the returned edge would point from `v1` to `v0`.
    /// Calling `rev` twice will always return the original vertex.
    #[inline]
    pub fn rev(self) -> Self {
        // Flip the last bit
        Self::new(self.index() ^ 0x1)
    }

    /// Converts this directed edge handle into an undirected edge handle.
    ///
    /// *See also the [handles](crate::handles) module for more information.*
    #[inline]
    pub fn as_undirected(self) -> FixedUndirectedEdgeHandle {
        FixedHandleImpl::new(self.index() >> 1)
    }
}

impl<'a, V, DE, UE, F, Type: Copy, InnerOuter: InnerOuterMarker> Clone
    for DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, V, DE, UE, F, Type: Copy, InnerOuter: InnerOuterMarker> Copy
    for DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
}

impl<'a, V, DE, UE, F, Type: PartialEq, InnerOuter: InnerOuterMarker> PartialEq
    for DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
    fn eq(&self, other: &Self) -> bool {
        self.handle == other.handle
    }
}

impl<'a, V, DE, UE, F, Type: Eq, InnerOuter: InnerOuterMarker> Eq
    for DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
}

impl<'a, V, DE, UE, F, Type: Hash, InnerOuter: InnerOuterMarker> Hash
    for DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
    fn hash<HA: Hasher>(&self, state: &mut HA) {
        self.handle.hash(state);
    }
}

impl<'a, V, DE, UE, F, Type: Ord, InnerOuter: InnerOuterMarker> Ord
    for DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
    fn cmp(&self, other: &Self) -> Ordering {
        self.handle.cmp(&other.handle)
    }
}

impl<'a, V, DE, UE, F, Type: PartialOrd, InnerOuter: InnerOuterMarker> PartialOrd
    for DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        self.handle.partial_cmp(&other.handle)
    }
}

impl<'a, V, DE, UE, F, Type: Copy + Default, InnerOuter: InnerOuterMarker>
    DynamicHandleImpl<'a, V, DE, UE, F, Type, InnerOuter>
{
    /// Converts this dynamic handle to its fixed variant.
    ///
    /// *See also the [handles module](crate::handles)*
    pub fn fix(&self) -> FixedHandleImpl<Type, InnerOuter> {
        self.handle
    }

    /// Returns the internal index of this element.
    ///
    /// Indices of the same handle type are guaranteed to be unique (e.g. different vertices will
    /// have different indices from each other).
    ///
    /// Indices will always be in the interval `0` .. `number_of_elements` (e.g. the number of
    /// directed edges).
    ///
    /// Adding vertices will not change any indices. Vertex removal does affect indices -
    /// the index of elements may change to swap-fill any gaps that were created.
    pub fn index(&self) -> usize {
        self.handle.index()
    }
}

impl FixedFaceHandle<PossiblyOuterTag> {
    /// Returns `true` if this face is the single outer face.
    #[inline]
    pub fn is_outer(&self) -> bool {
        *self == super::super::dcel_operations::OUTER_FACE_HANDLE
    }

    /// Converts this face handle to an inner face.
    ///
    /// Returns `None` if this handle refers to the single outer face.
    pub fn as_inner(&self) -> Option<FixedFaceHandle<InnerTag>> {
        if self.is_outer() {
            None
        } else {
            Some(self.adjust_inner_outer())
        }
    }
}

impl<'a, V, DE, UE, F> AsRef<DE> for DirectedEdgeHandle<'a, V, DE, UE, F> {
    fn as_ref(&self) -> &DE {
        self.data()
    }
}

impl<'a, V, DE, UE, F> DirectedEdgeHandle<'a, V, DE, UE, F> {
    /// Returns the edge's two vertices.
    ///
    /// The first vertex is `self.from()`, the second vertex is `self.to()`.
    pub fn vertices(&self) -> [VertexHandle<'a, V, DE, UE, F>; 2] {
        [self.from(), self.to()]
    }

    /// Returns the edge's origin vertex.
    pub fn from(&self) -> VertexHandle<'a, V, DE, UE, F> {
        let entry = self.dcel.half_edge(self.handle);
        DynamicHandleImpl::new(self.dcel, entry.origin.adjust_inner_outer())
    }

    /// Returns the edge's destination vertex.
    pub fn to(&self) -> VertexHandle<'a, V, DE, UE, F> {
        self.rev().from()
    }

    /// Returns this edge in reversed direction.
    #[inline]
    pub fn rev(&self) -> Self {
        DirectedEdgeHandle::new(self.dcel, self.handle.rev())
    }

    /// Returns the vertex which lies opposite of this edge.
    ///
    /// This is equal to calling `self.prev().from()` or `self.next().to()`.
    /// Returns `None` if this edge is part of the convex hull.
    pub fn opposite_vertex(&self) -> Option<VertexHandle<'a, V, DE, UE, F>> {
        if self.is_outer_edge() {
            None
        } else {
            Some(self.prev().from())
        }
    }

    /// Returns the oriented next edge.
    ///
    /// The oriented next edge shares the same face as this edge.
    /// When traversing the face's edges in oriented order,
    /// this edge is the predecessor of the oriented next edge.
    /// "Oriented" means counterclockwise for right handed
    /// coordinate systems.
    pub fn next(&self) -> DirectedEdgeHandle<'a, V, DE, UE, F> {
        let entry = self.dcel.half_edge(self.handle);
        DirectedEdgeHandle::new(self.dcel, entry.next)
    }

    /// Returns the oriented previous edge.
    ///
    /// The oriented previous edge shares the same face as this edge.
    /// When traversing the face's edges in oriented order,
    /// this edge is the successor of the oriented previous edge.
    /// "Oriented" means counterclockwise for right handed
    /// coordinate systems.
    pub fn prev(&self) -> DirectedEdgeHandle<'a, V, DE, UE, F> {
        let entry = self.dcel.half_edge(self.handle);
        DirectedEdgeHandle::new(self.dcel, entry.prev)
    }

    /// Returns the face located to the left of this edge.
    pub fn face(&self) -> FaceHandle<'a, PossiblyOuterTag, V, DE, UE, F> {
        let entry = self.dcel.half_edge(self.handle);
        self.dcel.face(entry.face)
    }

    /// Returns the next edge in clockwise direction.
    ///
    /// Note that this assumes that you use a right handed coordinate system,
    /// otherwise the sense of orientation is inverted.
    pub fn cw(&self) -> DirectedEdgeHandle<'a, V, DE, UE, F> {
        self.rev().next()
    }

    /// Returns the next edge in counter clockwise direction.
    ///
    /// Note that this assumes that you use a right handed coordinate system,
    /// otherwise the sense of orientation is inverted.
    pub fn ccw(&self) -> DirectedEdgeHandle<'a, V, DE, UE, F> {
        self.prev().rev()
    }

    /// Returns a reference to the data associated with this directed edge.
    ///
    /// Use [Triangulation::directed_edge_data_mut](crate::Triangulation::directed_edge_data_mut)
    /// to modify the edge data.
    pub fn data(&self) -> &'a DE {
        self.entry().get_directed_data(self.handle)
    }

    fn entry(&self) -> &'a EdgeEntry<DE, UE> {
        self.dcel.edge_entry(self.handle.as_undirected())
    }

    /// Converts this directed edge handle into an undirected edge handle.
    ///
    /// *See also the [handles](crate::handles) module.*
    #[inline]
    pub fn as_undirected(self) -> UndirectedEdgeHandle<'a, V, DE, UE, F> {
        DynamicHandleImpl::new(self.dcel, self.handle.as_undirected())
    }

    /// Returns `true` if this edge is adjacent to the outer face.
    pub fn is_outer_edge(&self) -> bool {
        self.face().is_outer()
    }

    /// Returns `true` if either this edge or its reversed edge is adjacent to the outer face.
    pub fn is_part_of_convex_hull(&self) -> bool {
        self.is_outer_edge() || self.rev().is_outer_edge()
    }

    /// Converts this edge into its dual voronoi edge.
    ///
    /// See also [as_delaunay_edge](crate::handles::DirectedVoronoiEdge::as_delaunay_edge).
    pub fn as_voronoi_edge(&self) -> DirectedVoronoiEdge<'a, V, DE, UE, F> {
        DirectedVoronoiEdge::new(self.dcel, FixedHandleImpl::new(self.handle.index()))
    }
}

impl<'a, V, DE, UE, F> DirectedEdgeHandle<'a, V, DE, UE, F>
where
    V: HasPosition,
{
    /// Returns the start and end position of this edge.
    ///
    /// The first returned position is `self.from().position()`, the second is
    ///  `self.to().position()`.
    pub fn positions(&self) -> [Point2<<V as HasPosition>::Scalar>; 2] {
        [self.from().position(), self.to().position()]
    }

    /// Returns the position of the vertex opposite of this edge.
    ///
    /// See also [opposite_vertex()](Self::opposite_vertex()).
    /// Returns `None` if this edge is an outer edge.
    #[inline]
    pub fn opposite_position(&self) -> Option<Point2<V::Scalar>> {
        self.opposite_vertex().map(|v| v.position())
    }

    /// Returns the squared length of this edge.
    pub fn length_2(&self) -> V::Scalar {
        self.as_undirected().length_2()
    }

    #[inline]
    /// Identifies on which side of this edge a point lies.
    pub fn side_query(&self, query_point: Point2<V::Scalar>) -> LineSideInfo {
        let (p1, p2) = (self.from().position(), self.to().position());
        math::side_query(p1, p2, query_point)
    }

    /// Indicates the position of a point being projected onto this edge.
    ///
    /// A point's projection can either come _before_, _on_ or _behind_ this edge.
    /// Note that this method may return inaccurate results due to rounding issues.
    ///
    #[doc = include_str!("../../../images/project_point.svg")]
    ///
    /// *An image displaying differently colored areas which would result in different point projections*
    ///
    /// # Example
    /// ```
    /// # fn main() -> Result<(), spade::InsertionError> {
    /// use spade::{Point2, Triangulation, DelaunayTriangulation};
    ///
    /// let from = Point2::new(0.0, 0.0);
    /// let to = Point2::new(2.0, 0.0);
    ///
    /// let mut triangulation: DelaunayTriangulation<_> = Default::default();
    /// let v0 = triangulation.insert(from)?;
    /// let v1 = triangulation.insert(to)?;
    /// // This edge goes from "from" to "to"
    /// let edge = triangulation.get_edge_from_neighbors(v0, v1).unwrap();
    ///
    /// // These vertices are all projected before the edge
    /// assert!(edge.project_point(Point2::new(-0.2, 0.0)).is_before_edge());
    /// assert!(edge.project_point(Point2::new(-1002.0, -12.0)).is_before_edge());
    ///
    /// // These vertices are all projected onto the edge
    /// assert!(edge.project_point(Point2::new(1.0, 5.0)).is_on_edge());
    /// assert!(edge.project_point(Point2::new(0.5, -2.0)).is_on_edge());
    /// assert!(edge.project_point(Point2::new(1.0, 0.0)).is_on_edge());
    ///
    /// // These vertices are all projected behind the edge
    /// assert!(edge.project_point(Point2::new(4.000001, 0.0)).is_behind_edge());
    /// assert!(edge.project_point(Point2::new(5.0, -12.0)).is_behind_edge());
    /// # Ok (()) }
    /// ```
    pub fn project_point(
        &self,
        query_point: Point2<V::Scalar>,
    ) -> math::PointProjection<V::Scalar> {
        let (p1, p2) = (self.from().position(), self.to().position());
        math::project_point(p1, p2, query_point)
    }

    pub(crate) fn intersects_edge_non_collinear(
        &self,
        other_from: Point2<V::Scalar>,
        other_to: Point2<V::Scalar>,
    ) -> bool {
        let other_from_query = self.side_query(other_from);
        let other_to_query = self.side_query(other_to);
        let self_from_query = math::side_query(other_from, other_to, self.from().position());
        let self_to_query = math::side_query(other_from, other_to, self.to().position());

        assert!(
            ![
                &other_from_query,
                &other_to_query,
                &self_from_query,
                &self_to_query
            ]
            .iter()
            .all(|q| q.is_on_line()),
            "intersects_edge_non_collinear: Given edge is collinear."
        );

        other_from_query != other_to_query && self_from_query != self_to_query
    }
}

impl<'a, V, DE, UE, F> DirectedEdgeHandle<'a, V, DE, CdtEdge<UE>, F> {
    /// Returns `true` if this edge is a constraint edge.
    pub fn is_constraint_edge(self) -> bool {
        self.as_undirected().is_constraint_edge()
    }
}

impl FixedUndirectedEdgeHandle {
    /// Converts this directed edge into an undirected edge handle.
    ///
    /// Any of the two directed edges may be returned.
    ///
    /// See also [FixedDirectedEdgeHandle::as_undirected]
    #[inline]
    pub fn as_directed(&self) -> FixedDirectedEdgeHandle {
        FixedDirectedEdgeHandle::new_normalized(self.index())
    }

    /// Returns the two directed edges of this undirected edge in any order.
    pub fn directed_edges(&self) -> [FixedDirectedEdgeHandle; 2] {
        [self.as_directed(), self.as_directed().rev()]
    }

    #[inline]
    pub(in super::super) fn normalized(&self) -> FixedDirectedEdgeHandle {
        self.as_directed()
    }

    #[inline]
    pub(in super::super) fn not_normalized(&self) -> FixedDirectedEdgeHandle {
        self.as_directed().rev()
    }
}

impl<'a, V, DE, UE, F> UndirectedVoronoiEdge<'a, V, DE, UE, F> {
    /// Returns the edge's two vertices.
    ///
    /// The vertices are returned in any order.
    pub fn vertices(&self) -> [VoronoiVertex<'a, V, DE, UE, F>; 2] {
        [self.as_directed().from(), self.as_directed().to()]
    }

    /// Converts this undirected handle into a directed edge handle.
    pub fn as_directed(&self) -> DirectedVoronoiEdge<'a, V, DE, UE, F> {
        self.as_delaunay_edge().as_directed().as_voronoi_edge()
    }

    /// Returns the dual edge of the Delaunay triangulation.
    pub fn as_delaunay_edge(&self) -> UndirectedEdgeHandle<'a, V, DE, UE, F> {
        UndirectedEdgeHandle::new(
            self.dcel,
            FixedUndirectedEdgeHandle::new(self.handle.index()),
        )
    }
}

impl<'a, V, DE, UE, F> AsRef<UE> for UndirectedEdgeHandle<'a, V, DE, UE, F> {
    fn as_ref(&self) -> &UE {
        self.data()
    }
}

impl<'a, V, DE, UE, F> UndirectedEdgeHandle<'a, V, DE, UE, F> {
    /// Returns the edge's two vertices.
    ///
    /// The vertices are returned in any order.
    pub fn vertices(&self) -> [VertexHandle<'a, V, DE, UE, F>; 2] {
        [self.as_directed().from(), self.as_directed().to()]
    }

    /// Converts this directed edge into an undirected edge handle.
    #[inline]
    pub fn as_directed(&self) -> DirectedEdgeHandle<'a, V, DE, UE, F> {
        DirectedEdgeHandle::new(self.dcel, self.handle.as_directed())
    }

    /// Returns the dual edge in the Voronoi diagram.
    pub fn as_voronoi_edge(&self) -> UndirectedVoronoiEdge<'a, V, DE, UE, F> {
        UndirectedVoronoiEdge::new(self.dcel, FixedHandleImpl::new(self.handle.index()))
    }

    /// Returns a reference to the data associated with this directed edge.
    ///
    /// Use [Triangulation::undirected_edge_data_mut](crate::Triangulation::undirected_edge_data_mut)
    /// to modify the edge data.
    pub fn data(&self) -> &UE {
        self.dcel.undirected_edge_data(self.handle)
    }

    /// Returns `true` if the outer face is adjacent to any side of this undirected edge.
    pub fn is_part_of_convex_hull(&self) -> bool {
        self.as_directed().is_part_of_convex_hull()
    }
}

impl<'a, V, DE, UE, F> UndirectedEdgeHandle<'a, V, DE, UE, F>
where
    V: HasPosition,
{
    /// Returns the end positions of this edge.
    ///
    /// The positions are returned in any order.
    pub fn positions(&self) -> [Point2<V::Scalar>; 2] {
        let [v0, v1] = self.vertices();
        [v0.position(), v1.position()]
    }

    /// Returns the squared length of this edge
    pub fn length_2(&self) -> V::Scalar {
        let [p0, p1] = self.positions();
        p0.sub(p1).length2()
    }
}

impl<'a, V, DE, UE, F> UndirectedEdgeHandle<'a, V, DE, UE, F>
where
    V: HasPosition,
    V::Scalar: Float,
{
    /// Returns the squared distance of a point to this edge.
    pub fn distance_2(&self, query_point: Point2<V::Scalar>) -> V::Scalar {
        let [p1, p2] = self.positions();
        math::distance_2(p1, p2, query_point)
    }

    /// Yields the nearest point on this edge.
    pub fn nearest_point(&self, query_point: Point2<V::Scalar>) -> Point2<V::Scalar> {
        let [v0, v1] = self.positions();
        math::nearest_point(v0, v1, query_point)
    }

    /// Returns the center of this edge.
    pub fn center(&self) -> Point2<V::Scalar> {
        let [v0, v1] = self.positions();
        v0.add(v1).mul(0.5.into())
    }
}

impl<'a, V, DE, UE, F> UndirectedEdgeHandle<'a, V, DE, CdtEdge<UE>, F> {
    /// Returns `true` if this edge is a constraint edge.
    pub fn is_constraint_edge(self) -> bool {
        self.data().is_constraint_edge()
    }
}

impl<'a, V, DE, UE, InnerOuter, F> AsRef<F> for FaceHandle<'a, InnerOuter, V, DE, UE, F>
where
    InnerOuter: InnerOuterMarker,
{
    fn as_ref(&self) -> &F {
        self.data()
    }
}

impl<'a, V, DE, UE, F> FaceHandle<'a, InnerTag, V, DE, UE, F> {
    /// Returns the three inner edges adjacent to this face.
    ///
    #[doc = include_str!("../../../images/face_adjacent_edges.svg")]
    ///
    /// The edges are returned in counter clockwise order.
    pub fn adjacent_edges(&self) -> [DirectedEdgeHandle<'a, V, DE, UE, F>; 3] {
        let e1 = self.adjacent_edge();
        let e0 = e1.prev();
        let e2 = e1.next();
        [e0, e1, e2]
    }

    /// Returns an edge that is adjacent to this face.
    ///
    /// If this face has multiple adjacent edges, any of them is returned.
    pub fn adjacent_edge(&self) -> DirectedEdgeHandle<'a, V, DE, UE, F> {
        // unwrap is okay since every inner face has an adjacent edge
        let handle = self.dcel.face_adjacent_edge(self.handle).unwrap();
        DynamicHandleImpl::new(self.dcel, handle)
    }

    /// Returns the face's three vertices.
    ///
    /// The vertices are returned in counter clockwise order.
    pub fn vertices(&self) -> [VertexHandle<'a, V, DE, UE, F>; 3] {
        let [e0, e1, e2] = self.adjacent_edges();
        [e0.from(), e1.from(), e2.from()]
    }
}

impl<'a, V, DE, UE, F> FaceHandle<'a, InnerTag, V, DE, UE, F>
where
    V: HasPosition,
{
    /// Returns the positions of the face's vertices
    ///
    /// The positions are returned in counter clockwise order.
    pub fn positions(&self) -> [Point2<V::Scalar>; 3] {
        let [v0, v1, v2] = self.vertices();
        [v0.position(), v1.position(), v2.position()]
    }

    /// Returns the triangle's area.
    pub fn area(&self) -> V::Scalar {
        math::triangle_area(self.positions())
    }
}

impl<'a, V, DE, UE, F> FaceHandle<'a, InnerTag, V, DE, UE, F>
where
    V: HasPosition,
    V::Scalar: Float,
{
    /// Returns the squared distance of a point to this triangle.
    ///
    /// The distance of a point inside the triangle is zero.
    pub fn distance_2(&self, query_point: Point2<V::Scalar>) -> V::Scalar {
        math::distance_2_triangle(self.positions(), query_point)
    }

    /// Returns the face's center point.
    ///
    /// The center point is the average position of its vertices.
    pub fn center(&self) -> Point2<V::Scalar> {
        let [v0, v1, v2] = self.positions();
        let one = V::Scalar::one();
        let three = one + one + one;
        v0.add(v1.add(v2)).mul(one / three)
    }

    /// Returns the face's circumcircle center and the **squared** radius of the circumcircle.
    ///
    /// The circumcircle is the unique circle that intersects all three vertices of the face.
    pub fn circumcircle(&self) -> (Point2<V::Scalar>, V::Scalar) {
        math::circumcenter(self.positions())
    }

    /// Returns the face's circumcenter.
    ///
    /// The circumcenter is the center of the circumcircle.
    pub fn circumcenter(&self) -> Point2<V::Scalar> {
        self.circumcircle().0
    }

    /// Returns the barycentric coordinates of a point relative to this face.
    ///
    /// The returned coordinates will sum up to 1.
    pub fn barycentric_interpolation(&self, coordinate: Point2<V::Scalar>) -> [V::Scalar; 3] {
        let [v1, v2, v3] = self.vertices();
        let [v1, v2, v3] = [v1.position(), v2.position(), v3.position()];
        let (x, y) = (coordinate.x, coordinate.y);
        let (x1, x2, x3) = (v1.x, v2.x, v3.x);
        let (y1, y2, y3) = (v1.y, v2.y, v3.y);
        let det = (y2 - y3) * (x1 - x3) + (x3 - x2) * (y1 - y3);
        let lambda1 = ((y2 - y3) * (x - x3) + (x3 - x2) * (y - y3)) / det;
        let lambda2 = ((y3 - y1) * (x - x3) + (x1 - x3) * (y - y3)) / det;
        let lambda3 = V::Scalar::one() - lambda1 - lambda2;
        [lambda1, lambda2, lambda3]
    }

    pub(crate) fn shortest_edge(&self) -> (DirectedEdgeHandle<'a, V, DE, UE, F>, V::Scalar) {
        let [e0, e1, e2] = self.adjacent_edges();
        let [l0, l1, l2] = [e0.length_2(), e1.length_2(), e2.length_2()];
        if l0 < l1 && l0 < l2 {
            (e0, l0)
        } else if l1 < l2 {
            (e1, l1)
        } else {
            (e2, l2)
        }
    }
}

impl<'a, V, DE, UE, F> AsRef<V> for VertexHandle<'a, V, DE, UE, F> {
    fn as_ref(&self) -> &V {
        self.data()
    }
}

impl<'a, V, DE, UE, F> VertexHandle<'a, V, DE, UE, F>
where
    V: HasPosition,
{
    /// Returns the position of this vertex.
    pub fn position(&self) -> Point2<V::Scalar> {
        self.dcel.vertex_data(self.handle).position()
    }
}

pub struct CCWEdgesNextBackFn;

impl NextBackFn for CCWEdgesNextBackFn {
    fn next<V, DE, UE, F>(
        edge_handle: DirectedEdgeHandle<V, DE, UE, F>,
    ) -> DirectedEdgeHandle<V, DE, UE, F> {
        edge_handle.ccw()
    }

    fn next_back<V, DE, UE, F>(
        edge_handle: DirectedEdgeHandle<V, DE, UE, F>,
    ) -> DirectedEdgeHandle<V, DE, UE, F> {
        edge_handle.cw()
    }
}

impl<'a, V, DE, UE, F> VertexHandle<'a, V, DE, UE, F> {
    /// Returns all directed edges going out of this vertex.
    ///
    /// The edges are returned in counter clockwise order, beginning at an arbitrary
    /// edge.
    ///
    #[doc = include_str!("../../../images/circular_iterator.svg")]
    ///
    /// *A possible iteration order of `v.out_edges()`*
    ///
    /// *Note*: The returned iterator implements `DoubleEndedIterator`, allowing traversal in
    /// clockwise order.
    pub fn out_edges(&self) -> CircularIterator<'a, V, DE, UE, F, CCWEdgesNextBackFn> {
        if let Some(edge) = self.out_edge() {
            CircularIterator::new(edge)
        } else {
            CircularIterator::new_empty(DirectedEdgeHandle::new(
                self.dcel,
                FixedDirectedEdgeHandle::new(0),
            ))
        }
    }

    /// Returns an outgoing edge of this vertex.
    ///
    /// If the vertex has multiple outgoing edges, any of them is returned.
    pub fn out_edge(&self) -> Option<DirectedEdgeHandle<'a, V, DE, UE, F>> {
        self.dcel
            .vertex_out_edge(self.handle)
            .map(|handle| DirectedEdgeHandle::new(self.dcel, handle))
    }

    /// Returns the data associated with this vertex.
    pub fn data(&self) -> &V {
        self.dcel.vertex_data(self.handle)
    }

    /// Returns the voronoi face that corresponds to this vertex of the Delaunay triangulation.
    pub fn as_voronoi_face(&self) -> VoronoiFace<'a, V, DE, UE, F> {
        VoronoiFace::new(self.dcel, FixedHandleImpl::new(self.handle.index()))
    }
}

impl<'a, V, DE, UE, F> DirectedEdgeHandle<'a, V, DE, UE, F>
where
    V: HasPosition,
    V::Scalar: Float,
{
    /// Returns the squared distance of a point to this edge.
    pub fn distance_2(&self, query_point: Point2<V::Scalar>) -> V::Scalar {
        self.as_undirected().distance_2(query_point)
    }

    /// Yields the nearest point on this edge.
    pub fn nearest_point(&self, query_point: Point2<V::Scalar>) -> Point2<V::Scalar> {
        self.as_undirected().nearest_point(query_point)
    }

    /// Returns the center of this edge
    pub fn center(&self) -> Point2<V::Scalar> {
        self.as_undirected().center()
    }
}

impl<'a, V, DE, UE, F, InnerOuter: InnerOuterMarker> FaceHandle<'a, InnerOuter, V, DE, UE, F> {
    /// Returns a reference to the data associated with this face.
    pub fn data(&self) -> &F {
        self.dcel.face_data(self.handle)
    }
}

impl<'a, V, DE, UE, F> FaceHandle<'a, PossiblyOuterTag, V, DE, UE, F> {
    /// Returns `true` if this handle refers to the single outer face.
    #[inline]
    pub fn is_outer(&self) -> bool {
        self.handle.is_outer()
    }

    /// Converts this possibly outer face handle into an inner face handle.
    ///
    /// Returns `None` if this handle refers to the outer face.
    pub fn as_inner(&self) -> Option<FaceHandle<'a, InnerTag, V, DE, UE, F>> {
        if self.is_outer() {
            None
        } else {
            Some(FaceHandle::new(self.dcel, self.handle.adjust_inner_outer()))
        }
    }

    /// Returns an edge that is adjacent to this face.
    ///
    /// The returned edge has this face on its left side.
    /// Returns `None` if the triangulation has only one or no vertices.
    pub fn adjacent_edge(&self) -> Option<DirectedEdgeHandle<'a, V, DE, UE, F>> {
        self.dcel
            .face_adjacent_edge(self.handle)
            .map(|handle| DirectedEdgeHandle::new(self.dcel, handle))
    }
}

#[cfg(test)]
mod test {
    use super::FixedDirectedEdgeHandle;

    #[test]
    fn test_new_normalized_and_index_and_sym() {
        for index in 0..10 {
            let handle: FixedDirectedEdgeHandle = FixedDirectedEdgeHandle::new_normalized(index);
            let rev = handle.rev();
            assert_eq!(handle.as_undirected().index(), index);
            assert!(handle.is_normalized());

            assert_ne!(handle, handle.rev());
            assert!(!rev.is_normalized());
            assert_eq!(rev.rev(), handle);
        }
    }
}