1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
/// A trait for describing vector operations used by vectorized searchers.
///
/// The trait is highly constrained to low level vector operations needed.
/// In general, it was invented mostly to be generic over x86's __m128i and
/// __m256i types. At time of writing, it also supports wasm and aarch64
/// 128-bit vector types as well.
///
/// # Safety
///
/// All methods are not safe since they are intended to be implemented using
/// vendor intrinsics, which are also not safe. Callers must ensure that the
/// appropriate target features are enabled in the calling function, and that
/// the current CPU supports them. All implementations should avoid marking the
/// routines with #[target_feature] and instead mark them as #[inline(always)]
/// to ensure they get appropriately inlined. (inline(always) cannot be used
/// with target_feature.)
pub(crate) trait Vector: Copy + core::fmt::Debug {
/// The number of bits in the vector.
const BITS: usize;
/// The number of bytes in the vector. That is, this is the size of the
/// vector in memory.
const BYTES: usize;
/// The bits that must be zero in order for a `*const u8` pointer to be
/// correctly aligned to read vector values.
const ALIGN: usize;
/// The type of the value returned by `Vector::movemask`.
///
/// This supports abstracting over the specific representation used in
/// order to accommodate different representations in different ISAs.
type Mask: MoveMask;
/// Create a vector with 8-bit lanes with the given byte repeated into each
/// lane.
unsafe fn splat(byte: u8) -> Self;
/// Read a vector-size number of bytes from the given pointer. The pointer
/// must be aligned to the size of the vector.
///
/// # Safety
///
/// Callers must guarantee that at least `BYTES` bytes are readable from
/// `data` and that `data` is aligned to a `BYTES` boundary.
unsafe fn load_aligned(data: *const u8) -> Self;
/// Read a vector-size number of bytes from the given pointer. The pointer
/// does not need to be aligned.
///
/// # Safety
///
/// Callers must guarantee that at least `BYTES` bytes are readable from
/// `data`.
unsafe fn load_unaligned(data: *const u8) -> Self;
/// _mm_movemask_epi8 or _mm256_movemask_epi8
unsafe fn movemask(self) -> Self::Mask;
/// _mm_cmpeq_epi8 or _mm256_cmpeq_epi8
unsafe fn cmpeq(self, vector2: Self) -> Self;
/// _mm_and_si128 or _mm256_and_si256
unsafe fn and(self, vector2: Self) -> Self;
/// _mm_or or _mm256_or_si256
unsafe fn or(self, vector2: Self) -> Self;
/// Returns true if and only if `Self::movemask` would return a mask that
/// contains at least one non-zero bit.
unsafe fn movemask_will_have_non_zero(self) -> bool {
self.movemask().has_non_zero()
}
}
/// A trait that abstracts over a vector-to-scalar operation called
/// "move mask."
///
/// On x86-64, this is `_mm_movemask_epi8` for SSE2 and `_mm256_movemask_epi8`
/// for AVX2. It takes a vector of `u8` lanes and returns a scalar where the
/// `i`th bit is set if and only if the most significant bit in the `i`th lane
/// of the vector is set. The simd128 ISA for wasm32 also supports this
/// exact same operation natively.
///
/// ... But aarch64 doesn't. So we have to fake it with more instructions and
/// a slightly different representation. We could do extra work to unify the
/// representations, but then would require additional costs in the hot path
/// for `memchr` and `packedpair`. So instead, we abstraction over the specific
/// representation with this trait an ddefine the operations we actually need.
pub(crate) trait MoveMask: Copy + core::fmt::Debug {
/// Return a mask that is all zeros except for the least significant `n`
/// lanes in a corresponding vector.
fn all_zeros_except_least_significant(n: usize) -> Self;
/// Returns true if and only if this mask has a a non-zero bit anywhere.
fn has_non_zero(self) -> bool;
/// Returns the number of bits set to 1 in this mask.
fn count_ones(self) -> usize;
/// Does a bitwise `and` operation between `self` and `other`.
fn and(self, other: Self) -> Self;
/// Does a bitwise `or` operation between `self` and `other`.
fn or(self, other: Self) -> Self;
/// Returns a mask that is equivalent to `self` but with the least
/// significant 1-bit set to 0.
fn clear_least_significant_bit(self) -> Self;
/// Returns the offset of the first non-zero lane this mask represents.
fn first_offset(self) -> usize;
/// Returns the offset of the last non-zero lane this mask represents.
fn last_offset(self) -> usize;
}
/// This is a "sensible" movemask implementation where each bit represents
/// whether the most significant bit is set in each corresponding lane of a
/// vector. This is used on x86-64 and wasm, but such a mask is more expensive
/// to get on aarch64 so we use something a little different.
///
/// We call this "sensible" because this is what we get using native sse/avx
/// movemask instructions. But neon has no such native equivalent.
#[derive(Clone, Copy, Debug)]
pub(crate) struct SensibleMoveMask(u32);
impl SensibleMoveMask {
/// Get the mask in a form suitable for computing offsets.
///
/// Basically, this normalizes to little endian. On big endian, this swaps
/// the bytes.
#[inline(always)]
fn get_for_offset(self) -> u32 {
#[cfg(target_endian = "big")]
{
self.0.swap_bytes()
}
#[cfg(target_endian = "little")]
{
self.0
}
}
}
impl MoveMask for SensibleMoveMask {
#[inline(always)]
fn all_zeros_except_least_significant(n: usize) -> SensibleMoveMask {
debug_assert!(n < 32);
SensibleMoveMask(!((1 << n) - 1))
}
#[inline(always)]
fn has_non_zero(self) -> bool {
self.0 != 0
}
#[inline(always)]
fn count_ones(self) -> usize {
self.0.count_ones() as usize
}
#[inline(always)]
fn and(self, other: SensibleMoveMask) -> SensibleMoveMask {
SensibleMoveMask(self.0 & other.0)
}
#[inline(always)]
fn or(self, other: SensibleMoveMask) -> SensibleMoveMask {
SensibleMoveMask(self.0 | other.0)
}
#[inline(always)]
fn clear_least_significant_bit(self) -> SensibleMoveMask {
SensibleMoveMask(self.0 & (self.0 - 1))
}
#[inline(always)]
fn first_offset(self) -> usize {
// We are dealing with little endian here (and if we aren't, we swap
// the bytes so we are in practice), where the most significant byte
// is at a higher address. That means the least significant bit that
// is set corresponds to the position of our first matching byte.
// That position corresponds to the number of zeros after the least
// significant bit.
self.get_for_offset().trailing_zeros() as usize
}
#[inline(always)]
fn last_offset(self) -> usize {
// We are dealing with little endian here (and if we aren't, we swap
// the bytes so we are in practice), where the most significant byte is
// at a higher address. That means the most significant bit that is set
// corresponds to the position of our last matching byte. The position
// from the end of the mask is therefore the number of leading zeros
// in a 32 bit integer, and the position from the start of the mask is
// therefore 32 - (leading zeros) - 1.
32 - self.get_for_offset().leading_zeros() as usize - 1
}
}
#[cfg(target_arch = "x86_64")]
mod x86sse2 {
use core::arch::x86_64::*;
use super::{SensibleMoveMask, Vector};
impl Vector for __m128i {
const BITS: usize = 128;
const BYTES: usize = 16;
const ALIGN: usize = Self::BYTES - 1;
type Mask = SensibleMoveMask;
#[inline(always)]
unsafe fn splat(byte: u8) -> __m128i {
_mm_set1_epi8(byte as i8)
}
#[inline(always)]
unsafe fn load_aligned(data: *const u8) -> __m128i {
_mm_load_si128(data as *const __m128i)
}
#[inline(always)]
unsafe fn load_unaligned(data: *const u8) -> __m128i {
_mm_loadu_si128(data as *const __m128i)
}
#[inline(always)]
unsafe fn movemask(self) -> SensibleMoveMask {
SensibleMoveMask(_mm_movemask_epi8(self) as u32)
}
#[inline(always)]
unsafe fn cmpeq(self, vector2: Self) -> __m128i {
_mm_cmpeq_epi8(self, vector2)
}
#[inline(always)]
unsafe fn and(self, vector2: Self) -> __m128i {
_mm_and_si128(self, vector2)
}
#[inline(always)]
unsafe fn or(self, vector2: Self) -> __m128i {
_mm_or_si128(self, vector2)
}
}
}
#[cfg(target_arch = "x86_64")]
mod x86avx2 {
use core::arch::x86_64::*;
use super::{SensibleMoveMask, Vector};
impl Vector for __m256i {
const BITS: usize = 256;
const BYTES: usize = 32;
const ALIGN: usize = Self::BYTES - 1;
type Mask = SensibleMoveMask;
#[inline(always)]
unsafe fn splat(byte: u8) -> __m256i {
_mm256_set1_epi8(byte as i8)
}
#[inline(always)]
unsafe fn load_aligned(data: *const u8) -> __m256i {
_mm256_load_si256(data as *const __m256i)
}
#[inline(always)]
unsafe fn load_unaligned(data: *const u8) -> __m256i {
_mm256_loadu_si256(data as *const __m256i)
}
#[inline(always)]
unsafe fn movemask(self) -> SensibleMoveMask {
SensibleMoveMask(_mm256_movemask_epi8(self) as u32)
}
#[inline(always)]
unsafe fn cmpeq(self, vector2: Self) -> __m256i {
_mm256_cmpeq_epi8(self, vector2)
}
#[inline(always)]
unsafe fn and(self, vector2: Self) -> __m256i {
_mm256_and_si256(self, vector2)
}
#[inline(always)]
unsafe fn or(self, vector2: Self) -> __m256i {
_mm256_or_si256(self, vector2)
}
}
}
#[cfg(target_arch = "aarch64")]
mod aarch64neon {
use core::arch::aarch64::*;
use super::{MoveMask, Vector};
impl Vector for uint8x16_t {
const BITS: usize = 128;
const BYTES: usize = 16;
const ALIGN: usize = Self::BYTES - 1;
type Mask = NeonMoveMask;
#[inline(always)]
unsafe fn splat(byte: u8) -> uint8x16_t {
vdupq_n_u8(byte)
}
#[inline(always)]
unsafe fn load_aligned(data: *const u8) -> uint8x16_t {
// I've tried `data.cast::<uint8x16_t>().read()` instead, but
// couldn't observe any benchmark differences.
Self::load_unaligned(data)
}
#[inline(always)]
unsafe fn load_unaligned(data: *const u8) -> uint8x16_t {
vld1q_u8(data)
}
#[inline(always)]
unsafe fn movemask(self) -> NeonMoveMask {
let asu16s = vreinterpretq_u16_u8(self);
let mask = vshrn_n_u16(asu16s, 4);
let asu64 = vreinterpret_u64_u8(mask);
let scalar64 = vget_lane_u64(asu64, 0);
NeonMoveMask(scalar64 & 0x8888888888888888)
}
#[inline(always)]
unsafe fn cmpeq(self, vector2: Self) -> uint8x16_t {
vceqq_u8(self, vector2)
}
#[inline(always)]
unsafe fn and(self, vector2: Self) -> uint8x16_t {
vandq_u8(self, vector2)
}
#[inline(always)]
unsafe fn or(self, vector2: Self) -> uint8x16_t {
vorrq_u8(self, vector2)
}
/// This is the only interesting implementation of this routine.
/// Basically, instead of doing the "shift right narrow" dance, we use
/// adajacent folding max to determine whether there are any non-zero
/// bytes in our mask. If there are, *then* we'll do the "shift right
/// narrow" dance. In benchmarks, this does lead to slightly better
/// throughput, but the win doesn't appear huge.
#[inline(always)]
unsafe fn movemask_will_have_non_zero(self) -> bool {
let low = vreinterpretq_u64_u8(vpmaxq_u8(self, self));
vgetq_lane_u64(low, 0) != 0
}
}
/// Neon doesn't have a `movemask` that works like the one in x86-64, so we
/// wind up using a different method[1]. The different method also produces
/// a mask, but 4 bits are set in the neon case instead of a single bit set
/// in the x86-64 case. We do an extra step to zero out 3 of the 4 bits,
/// but we still wind up with at least 3 zeroes between each set bit. This
/// generally means that we need to do some division by 4 before extracting
/// offsets.
///
/// In fact, the existence of this type is the entire reason that we have
/// the `MoveMask` trait in the first place. This basically lets us keep
/// the different representations of masks without being forced to unify
/// them into a single representation, which could result in extra and
/// unnecessary work.
///
/// [1]: https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
#[derive(Clone, Copy, Debug)]
pub(crate) struct NeonMoveMask(u64);
impl NeonMoveMask {
/// Get the mask in a form suitable for computing offsets.
///
/// Basically, this normalizes to little endian. On big endian, this
/// swaps the bytes.
#[inline(always)]
fn get_for_offset(self) -> u64 {
#[cfg(target_endian = "big")]
{
self.0.swap_bytes()
}
#[cfg(target_endian = "little")]
{
self.0
}
}
}
impl MoveMask for NeonMoveMask {
#[inline(always)]
fn all_zeros_except_least_significant(n: usize) -> NeonMoveMask {
debug_assert!(n < 16);
NeonMoveMask(!(((1 << n) << 2) - 1))
}
#[inline(always)]
fn has_non_zero(self) -> bool {
self.0 != 0
}
#[inline(always)]
fn count_ones(self) -> usize {
self.0.count_ones() as usize
}
#[inline(always)]
fn and(self, other: NeonMoveMask) -> NeonMoveMask {
NeonMoveMask(self.0 & other.0)
}
#[inline(always)]
fn or(self, other: NeonMoveMask) -> NeonMoveMask {
NeonMoveMask(self.0 | other.0)
}
#[inline(always)]
fn clear_least_significant_bit(self) -> NeonMoveMask {
NeonMoveMask(self.0 & (self.0 - 1))
}
#[inline(always)]
fn first_offset(self) -> usize {
// We are dealing with little endian here (and if we aren't,
// we swap the bytes so we are in practice), where the most
// significant byte is at a higher address. That means the least
// significant bit that is set corresponds to the position of our
// first matching byte. That position corresponds to the number of
// zeros after the least significant bit.
//
// Note that unlike `SensibleMoveMask`, this mask has its bits
// spread out over 64 bits instead of 16 bits (for a 128 bit
// vector). Namely, where as x86-64 will turn
//
// 0x00 0xFF 0x00 0x00 0xFF
//
// into 10010, our neon approach will turn it into
//
// 10000000000010000000
//
// And this happens because neon doesn't have a native `movemask`
// instruction, so we kind of fake it[1]. Thus, we divide the
// number of trailing zeros by 4 to get the "real" offset.
//
// [1]: https://community.arm.com/arm-community-blogs/b/infrastructure-solutions-blog/posts/porting-x86-vector-bitmask-optimizations-to-arm-neon
(self.get_for_offset().trailing_zeros() >> 2) as usize
}
#[inline(always)]
fn last_offset(self) -> usize {
// See comment in `first_offset` above. This is basically the same,
// but coming from the other direction.
16 - (self.get_for_offset().leading_zeros() >> 2) as usize - 1
}
}
}
#[cfg(all(target_arch = "wasm32", target_feature = "simd128"))]
mod wasm_simd128 {
use core::arch::wasm32::*;
use super::{SensibleMoveMask, Vector};
impl Vector for v128 {
const BITS: usize = 128;
const BYTES: usize = 16;
const ALIGN: usize = Self::BYTES - 1;
type Mask = SensibleMoveMask;
#[inline(always)]
unsafe fn splat(byte: u8) -> v128 {
u8x16_splat(byte)
}
#[inline(always)]
unsafe fn load_aligned(data: *const u8) -> v128 {
*data.cast()
}
#[inline(always)]
unsafe fn load_unaligned(data: *const u8) -> v128 {
v128_load(data.cast())
}
#[inline(always)]
unsafe fn movemask(self) -> SensibleMoveMask {
SensibleMoveMask(u8x16_bitmask(self).into())
}
#[inline(always)]
unsafe fn cmpeq(self, vector2: Self) -> v128 {
u8x16_eq(self, vector2)
}
#[inline(always)]
unsafe fn and(self, vector2: Self) -> v128 {
v128_and(self, vector2)
}
#[inline(always)]
unsafe fn or(self, vector2: Self) -> v128 {
v128_or(self, vector2)
}
}
}