1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237
#[cfg(not(feature = "std"))]
use hashbrown::{HashMap, HashSet};
#[cfg(feature = "std")]
use std::collections::{HashMap, HashSet};
use alloc::collections::VecDeque;
use alloc::vec::Vec;
use num_traits::Float;
use crate::{
delaunay_core::math, CdtEdge, ConstrainedDelaunayTriangulation, HasPosition, HintGenerator,
Point2, PositionInTriangulation, SpadeNum, Triangulation,
};
use super::{
DirectedEdgeHandle, FaceHandle, FixedFaceHandle, FixedUndirectedEdgeHandle, FixedVertexHandle,
InnerTag, TriangulationExt, UndirectedEdgeHandle,
};
/// Contains details about the outcome of a refinement procedure.
///
/// *See [ConstrainedDelaunayTriangulation::refine]*
#[derive(Debug, Clone)]
pub struct RefinementResult {
/// A `Vec` containing all outer faces that were excluded from refinement.
///
/// This `Vec` will be empty unless [RefinementParameters::exclude_outer_faces] has been set.
/// In this case, the `Vec` contains all finite outer faces, including any additional outer faces
/// that were created during the refinement.
pub excluded_faces: Vec<FixedFaceHandle<InnerTag>>,
/// Set to `true` if the refinement could be completed regularly.
///
/// This will be `false` if the refinement ran out of additional vertices
/// (see [RefinementParameters::with_max_additional_vertices]). Consider adapting the refinement parameters in this case,
/// either by using a higher additional vertex count or by e.g. lowering the [angle limit](RefinementParameters::with_angle_limit).
pub refinement_complete: bool,
}
/// Specifies the minimum allowed angle that should be kept after a refinement procedure.
///
/// The refinement algorithm will attempt to keep the *minimum angle in the triangulation* greater than
/// an angle limit specified with this struct.
///
/// *See [ConstrainedDelaunayTriangulation::refine], [RefinementParameters::with_angle_limit]*
#[derive(Copy, Clone, PartialEq, PartialOrd)]
pub struct AngleLimit {
radius_to_shortest_edge_limit: f64,
}
impl AngleLimit {
/// Create a new angle limit from an angle given in degrees.
///
/// Note that angles larger than 30 degrees will quickly lead to overrefinement as the algorithm
/// cannot necessarily guarantee termination (other than by limiting the number of additional inserted vertices).
///
/// Defaults to 30°. An angle of 0 degrees will disable refining due to small angles.
///
/// *See also [from_rad](crate::AngleLimit::from_rad)*
pub fn from_deg(degree: f64) -> Self {
Self::from_rad(degree.to_radians())
}
/// Create a new angle limit from an angle given in radians.
///
/// Note angles larger than 30 degrees (≈0.52rad = PI / 6) will quickly lead to poor refinement quality.
/// Passing in an angle of 0rad will disable refining due to small angles.
///
/// *See also [from_deg](crate::AngleLimit::from_deg)*
pub fn from_rad(rad: f64) -> Self {
let sin = rad.sin();
if sin == 0.0 {
Self::from_radius_to_shortest_edge_ratio(f64::INFINITY)
} else {
Self::from_radius_to_shortest_edge_ratio(0.5 / sin)
}
}
/// Returns the radius to shortest edge limit corresponding to this angle limit.
///
/// See [from_radius_to_shortest_edge_ratio](crate::AngleLimit::from_radius_to_shortest_edge_ratio) for more
/// information.
pub fn radius_to_shortest_edge_limit(&self) -> f64 {
self.radius_to_shortest_edge_limit
}
/// Creates a new angle limit by specifying the circumradius to shortest edge ratio that must be kept.
///
/// For each face, this ratio is calculated by dividing the circumradius of the face by the length of its shortest
/// edge.
/// This ratio is related directly to the minimum allowed angle by the formula
/// `ratio = 1 / (2 sin * (min_angle))`.
/// The *larger* the allowed min angle is, the *smaller* ratio becomes.
///
/// Larger ratio values will lead to a less refined triangulation. Passing in `f64::INFINITY` will disable
/// refining due to small angles.
///
/// Defaults to 1.0 (30 degrees).
///
/// # Example values
///
/// | ratio | Bound on smallest angle (deg) | Bound on smallest angle (rad) |
/// |-------|-------------------------------|-------------------------------|
/// | 0.58 | 60.00° | 1.05 |
/// | 0.60 | 56.44° | 0.99 |
/// | 0.70 | 45.58° | 0.80 |
/// | 0.80 | 38.68° | 0.68 |
/// | 0.90 | 33.75° | 0.59 |
/// | 1.00 | 30.00° | 0.52 |
/// | 1.10 | 27.04° | 0.47 |
/// | 1.20 | 24.62° | 0.43 |
/// | 1.30 | 22.62° | 0.39 |
/// | +INF | 0° | 0 |
pub fn from_radius_to_shortest_edge_ratio(ratio: f64) -> Self {
Self {
radius_to_shortest_edge_limit: ratio,
}
}
}
impl alloc::fmt::Debug for AngleLimit {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> alloc::fmt::Result {
f.debug_struct("AngleLimit")
.field(
"angle limit (deg)",
&(0.5 / self.radius_to_shortest_edge_limit)
.asin()
.to_degrees(),
)
.finish()
}
}
impl Default for AngleLimit {
fn default() -> Self {
Self::from_radius_to_shortest_edge_ratio(1.0)
}
}
#[derive(Debug, PartialEq, PartialOrd, Clone, Copy, Hash)]
enum RefinementHint {
Ignore,
ShouldRefine,
MustRefine,
}
/// Controls how Delaunay refinement is performed.
///
/// Refer to [ConstrainedDelaunayTriangulation::refine] and methods implemented by this type for more details
/// about which parameters are supported.
///
/// # Example
///
/// ```
/// use spade::{AngleLimit, ConstrainedDelaunayTriangulation, Point2, RefinementParameters};
///
/// fn refine_cdt(cdt: &mut ConstrainedDelaunayTriangulation<Point2<f64>>) {
/// let params = RefinementParameters::<f64>::new()
/// .exclude_outer_faces(true)
/// .keep_constraint_edges()
/// .with_min_required_area(0.0001)
/// .with_max_allowed_area(0.5)
/// .with_angle_limit(AngleLimit::from_deg(25.0));
///
/// cdt.refine(params);
/// }
/// ```
#[derive(Debug, PartialEq, Clone)]
pub struct RefinementParameters<S: SpadeNum + Float> {
max_additional_vertices: Option<usize>,
angle_limit: AngleLimit,
min_area: Option<S>,
max_area: Option<S>,
keep_constraint_edges: bool,
exclude_outer_faces: bool,
}
impl<S: SpadeNum + Float> Default for RefinementParameters<S> {
fn default() -> Self {
Self {
max_additional_vertices: None,
angle_limit: AngleLimit::from_radius_to_shortest_edge_ratio(1.0),
min_area: None,
max_area: None,
exclude_outer_faces: false,
keep_constraint_edges: false,
}
}
}
impl<S: SpadeNum + Float> RefinementParameters<S> {
/// Creates a new set of `RefinementParameters`.
///
/// The following values will be used by `new` and `Self::default`:
/// * `exclude_outer_faces`: disabled - all faces are used for refinement
/// * `keep_constraint_edges`: disabled
/// * `min_required_area`: disabled - no lower area limit is used
/// * `max_allowed_area`: disabled - no upper area limit is used
/// * `angle_limit`: 30 degrees by default.
/// * `num_additional_vertices`: 10 times the number of vertices in the triangulation
pub fn new() -> Self {
Self::default()
}
/// Specifies the smallest allowed inner angle in a refined triangulation.
///
/// The refinement algorithm will attempt to insert additional points (called steiner points) until the
/// minimum angle is larger than the angle bound specified by the refinement parameters.
///
/// Defaults to 30 degrees.
///
/// Note that angle limits much larger than 30 degrees may not always terminate successfully - consider checking
/// [RefinementResult::refinement_complete] to make sure that the angle limit could actually be applied everywhere.
///
/// # Examples of different angle limits
/// <table>
/// <tr><th>0° (no angle refinement)</th><th>20°</th><th>30°</th><th>34°</th></tr>
/// <tr><td>
#[doc = concat!(include_str!("../../images/angle_limit_00.svg"), "</td><td>")]
#[doc = concat!(include_str!("../../images/angle_limit_20.svg"), "</td><td>")]
#[doc = concat!(include_str!("../../images/angle_limit_30.svg"), "</td><td>")]
#[doc = concat!(include_str!("../../images/angle_limit_34.svg"), "</td></tr></table>")]
///
/// *See also [ConstrainedDelaunayTriangulation::refine]*
pub fn with_angle_limit(mut self, angle_limit: AngleLimit) -> Self {
self.angle_limit = angle_limit;
self
}
/// Specifies a lower bound for a triangles area.
///
/// The algorithm will attempt to ignore any triangle with an area below this limit. This can also prevent an
/// exhaustion of additionally available vertices (see [Self::with_max_additional_vertices]).
///
/// Note that there is no guarantee that no face below this area bound will be kept intact - in some cases, a split
/// will still be required to restore the triangulation's Delaunay property. Also, this value does not specify a lower
/// bound for the smallest possible triangle in the triangulation.
///
/// Should be set to something lower than [Self::with_max_allowed_area]. If this method is not called, no lower
/// bound check will be performed.
pub fn with_min_required_area(mut self, min_area: S) -> Self {
self.min_area = Some(min_area);
self
}
/// Specifies an upper bound for triangle areas in the triangulation.
///
/// By default, the refinement tries to be conservative in how many vertices it adds. This will lead to an uneven
/// triangle size distribution - areas with larger input features will contain fewer, larger triangles whereas
/// regions with small features will contain more densely packed triangles.
/// By specifying an upper area bound for triangles, the resulting triangle sizes can be made more similar
/// as any large triangle above the bound will be split into smaller parts.
///
/// # Examples of different maximum area values
#[doc = concat!(include_str!("../../images/refinement_maximum_area_no_limit.svg"))]
#[doc = concat!(include_str!("../../images/refinement_maximum_area_200.svg"))]
#[doc = concat!(include_str!("../../images/refinement_maximum_area_100.svg"))]
///
/// Should be set to something larger than [Self::with_min_required_area]. If this method is not called, no upper area
/// bound check will be performed.
pub fn with_max_allowed_area(mut self, max_area: S) -> Self {
self.max_area = Some(max_area);
self
}
/// Specifies how many additional vertices may be inserted during Delaunay refinement.
///
/// Refinement may, in some cases, fail to terminate if the angle limit is set too high
/// (see [with_angle_limit](Self::with_angle_limit)). Simply stopping the refinement after a certain number of vertices
/// has been inserted is an easy way to enforce termination. However, the resulting mesh may exhibit very poor quality
/// in this case - some areas may have become overly refined, others might be overlooked completely. Consider changing
/// the parameters (most notably the angle limit) if the refinement runs out of vertices.
///
/// Use [RefinementResult::refinement_complete] to check if the number of additional vertices was sufficient.
pub fn with_max_additional_vertices(mut self, max_additional_vertices: usize) -> Self {
self.max_additional_vertices = Some(max_additional_vertices);
self
}
/// Prevents constraint edges from being split during refinement.
///
/// By default, constraint edges may be split in order to restore the triangulation's Delaunay property.
/// The resulting two new edges will *become new constraint edges*, hence the original shape outlined by
/// constraint edges remains the same - no "gaps" or deviations are introduced.
///
/// Enabling this option will, in general, reduce the quality of the resulting mesh - it is not necessarily
/// Delaunay anymore and faces adjacent to long constraint edges may violate the configured [AngleLimit].
pub fn keep_constraint_edges(mut self) -> Self {
self.keep_constraint_edges = true;
self
}
/// Allows to exclude outer faces from the refinement process.
///
/// This is useful if the constraint edges form a *closed shape* with a clearly defined inner and outer part.
/// Spade will determine inner and outer faces by identifying which faces can be reached from the outer face
/// without "crossing" a constraint edge, similar to a flood fill algorithm.
///
/// Any holes in the triangulation will also be excluded. More specifically, any point with an odd winding number
/// is considered to be inner (see e.g. [Wikipedia](https://en.wikipedia.org/wiki/Point_in_polygon#Winding_number_algorithm)).
///
/// Note that excluded faces may still be subdivided if a neighboring edge needs to be split. However, they will never be the
/// *cause* for a subdivision - their angle and area is ignored.
///
/// The resulting outer faces of the triangulation are returned by the call to [refine](ConstrainedDelaunayTriangulation::refine),
/// see [RefinementResult::excluded_faces].
///
/// # Example
/// <table>
/// <tr><th>Unrefined</th><th>Refined</th></tr>
/// <tr><td>
#[doc = concat!(include_str!("../../images/exclude_outer_faces_unrefined.svg"), "</td><td>",include_str!("../../images/exclude_outer_faces_refined.svg"), " </td></tr></table>")]
///
/// *A refinement operation configured to exclude outer faces. All colored faces are considered outer faces and are
/// ignored during refinement. Note that the inner part of the "A" shape forms a hole and is also excluded.*
pub fn exclude_outer_faces(mut self, exclude: bool) -> Self {
self.exclude_outer_faces = exclude;
self
}
fn get_refinement_hint<V, DE, UE, F>(
&self,
face: FaceHandle<InnerTag, V, DE, UE, F>,
) -> RefinementHint
where
V: HasPosition<Scalar = S>,
{
if let Some(max_area) = self.max_area {
if face.area() > max_area {
return RefinementHint::MustRefine;
}
}
if let Some(min_area) = self.min_area {
if face.area() < min_area {
return RefinementHint::Ignore;
}
}
let (_, length2) = face.shortest_edge();
let (_, radius2) = face.circumcircle();
let ratio2 = radius2 / length2;
let angle_limit = self.angle_limit.radius_to_shortest_edge_limit;
if ratio2.into() > angle_limit * angle_limit {
RefinementHint::ShouldRefine
} else {
RefinementHint::Ignore
}
}
}
impl<V, DE, UE, F, L> ConstrainedDelaunayTriangulation<V, DE, UE, F, L>
where
V: HasPosition + From<Point2<<V as HasPosition>::Scalar>>,
DE: Default,
UE: Default,
F: Default,
L: HintGenerator<<V as HasPosition>::Scalar>,
<V as HasPosition>::Scalar: Float,
{
/// Refines a triangulation by inserting additional points to improve the quality of its mesh.
///
/// *Mesh quality*, when applied to constrained delaunay triangulations (CDT), usually refers to how skewed its
/// triangles are. A skewed triangle is a triangle with very large or very small (acute) inner angles.
/// Some applications (e.g. interpolation and finite element methods) perform poorly in the presence of skewed triangles.
///
/// Refining by inserting additional points (called "steiner points") may increase the minimum angle. The given
/// [RefinementParameters] should be used to modify the refinement behavior.
///
/// # General usage
///
/// The vertex type must implement `From<Point2<...>>` - otherwise, Spade cannot construct new steiner points at a
/// certain location. The refinement itself happens *in place* and will result in a valid CDT.
///
/// ```
/// use spade::{ConstrainedDelaunayTriangulation, RefinementParameters, Point2, InsertionError, Triangulation};
///
/// fn get_refined_triangulation(vertices: Vec<Point2<f64>>) ->
/// Result<ConstrainedDelaunayTriangulation<Point2<f64>>, InsertionError>
/// {
/// let mut cdt = ConstrainedDelaunayTriangulation::bulk_load(vertices)?;
/// let result = cdt.refine(RefinementParameters::default());
/// if !result.refinement_complete {
/// panic!("Refinement failed - I should consider using different parameters.")
/// }
///
/// return Ok(cdt)
/// }
/// ```
///
/// # Example image
///
/// <table>
/// <tr><th>Unrefined</th><th>Refined</th></tr>
/// <tr><td>
#[doc = concat!(include_str!("../../images/unrefined.svg"), "</td><td>",include_str!("../../images/refined.svg"), " </td></tr></table>")]
///
/// *A refinement example. The CDT on the left has some acute angles and skewed triangles.
/// The refined CDT on the right contains several additional points that prevents such triangles from appearing while keeping
/// all input vertices and constraint edges.*
///
/// # Quality guarantees
///
/// Refinement will ensure that the resulting triangulation fulfills a few properties:
/// - The triangulation's minimum angle will be larger than the angle specified by
/// [with_angle_limit](crate::RefinementParameters::with_angle_limit).<br>
/// *Exception*: Acute input angles (small angles between initial constraint edges) cannot be maximized as the constraint edges
/// must be kept intact. The algorithm will, for the most part, leave those places unchanged.<br>
/// *Exception*: The refinement will often not be able to increase the minimal angle much above 30 degrees as every newly
/// inserted steiner point may create additional skewed triangles.
/// - The refinement will fullfil the *Delaunay Property*: Every triangle's circumcenter will not contain any other vertex.<br>
/// *Exception*: Refining with [keep_constraint_edges](crate::RefinementParameters::keep_constraint_edges) cannot restore
/// the Delaunay property if doing so would require splitting a constraint edge.<br>
/// *Exception*: Refining with [exclude_outer_faces](crate::RefinementParameters::exclude_outer_faces) will not
/// restore the Delaunay property of any outer face.
/// - Spade allows to specify a [maximum allowed triangle area](crate::RefinementParameters::with_max_allowed_area).
/// The algorithm will attempt to subdivide any triangle with an area larger than this, independent of its smallest angle.
/// - Spade allows to specify a [minimum required triangle area](crate::RefinementParameters::with_min_required_area).
/// The refinement will attempt to ignore any triangle with an area smaller than this parameter. This can prevent the
/// refinement algorithm from over-refining in some cases.
///
/// # General limitations
///
/// The algorithm may fail to terminate in some cases for a minimum angle limit larger than 30 degrees. Such a limit can
/// result in an endless loop: Every additionally inserted point creates more triangles that need to be refined.
///
/// To prevent this, spade limits the number of additionally inserted steiner points
/// (see [RefinementParameters::with_max_additional_vertices]). However, this may leave the refinement in an incomplete state -
/// some areas of the input mesh may not have been triangulated at all, some will be overly refined.
/// Use [RefinementResult::refinement_complete] to identify if a refinement operation has succeeded without running out of
/// vertices.
///
/// For mitigation, consider either lowering the minimum angle limit
/// (see [RefinementParameters::with_angle_limit]) or introduce a
/// [minimum required area](RefinementParameters::with_min_required_area).
///
/// Meshes with very small input angles (angles between two constraint edges) may lead to poorly refined results.
/// Please consider providing a bug report if you encounter an input mesh which you think isn't refined well.
///
/// # Stability guarantees
///
/// While changing the interface of this method is considered to be a breaking change, changes to the specific
/// refinement process (e.g. which faces are split in which order) are not. Any patch release may change how
/// the same input mesh is being refined.
///
/// # References
///
/// This is an adaption of the classical refinement algorithms introduced by Jim Ruppert and Paul Chew.
///
/// For a good introduction to the topic, refer to the slides from a short course at the thirteenth and fourteenth
/// International Meshing Roundtables (2005) by Jonathan Richard Shewchuk:
/// <https://people.eecs.berkeley.edu/~jrs/papers/imrtalk.pdf>
///
/// Wikipedia: <https://en.wikipedia.org/wiki/Delaunay_refinement>
///
///
#[doc(alias = "Refinement")]
#[doc(alias = "Delaunay Refinement")]
pub fn refine(&mut self, parameters: RefinementParameters<V::Scalar>) -> RefinementResult {
use PositionInTriangulation::*;
let mut excluded_faces = if parameters.exclude_outer_faces {
calculate_outer_faces(self)
} else {
HashSet::new()
};
let mut legalize_edges_buffer = Vec::with_capacity(20);
let mut forcibly_split_segments_buffer = Vec::with_capacity(5);
// Maps each steiner point on an input edge onto the two vertices of that
// input edge. This helps in identifying when two steiner points share a common
// input angle
let mut constraint_edge_map = HashMap::new();
// Stores all edges that should be checked for encroachment
let mut encroached_segment_candidates =
VecDeque::with_capacity(self.num_constraints() + self.convex_hull_size());
encroached_segment_candidates.extend(
self.undirected_edges()
.filter(|edge| {
if parameters.keep_constraint_edges {
edge.is_part_of_convex_hull()
} else {
Self::is_fixed_edge(*edge)
}
})
.map(|edge| edge.fix()),
);
// Stores all faces that should be checked for their area and angles ("skinniness").
let mut skinny_triangle_candidates: VecDeque<_> = self.fixed_inner_faces().collect();
let num_initial_vertices: usize = self.num_vertices();
let num_additional_vertices = parameters
.max_additional_vertices
.unwrap_or(num_initial_vertices * 10);
let max_allowed_vertices =
usize::saturating_add(num_initial_vertices, num_additional_vertices);
let mut refinement_complete = true;
// Main loop of the algorithm
//
// Some terminology:
// - "Skinny triangle" refers to any triangle that has a minimum inner angle less than the allowed limit specified
// by the refinement parameters. The algorithm will attempt to insert steiner points to increase their minimal
// angle.
// - An edge is *encroached* by a point if that point lies in the diametral circle of the edge (the smallest circle
// fully containing the edge)
// - a "fixed" edge is a constraint edge or an edge of the convex hull. These are special as they may not be
// flipped - the input geometry must remain the same.
// - "input angle" is any angle between two fixed edges. Small input angles cannot be refined away as
// the input geometry must be kept intact.
// - "excluded faces" may exist if the triangulation's outer faces should not be refined. They are excluded from
// the third step in the main loop (see below). We don't simply delete these faces to keep the triangulation's
// convexity.
//
// Every iterations performs up to three checks:
// - First, check if any edges that must be split exists (`forcibly_split_segments_buffer`).
// - Second, check if any segment is encroached. If found, resolve the offending encroachment.
// Checking segments first makes sure that the algorithm
// restores the Delaunay property as quickly as possible.
// - Third, search for skinny triangles. Attempt to insert a new vertex at the triangles circumcenter. If inserting
// such a vertex would encroach any fixed edge, add the encroached edge to the forcibly split segments buffer
// and revisit the face later.
//
// See method `resolve_encroachment` for more details on how step 1 and 2 manage to split edges in order to resolve
// an encroachment.
'main_loop: loop {
if self.num_vertices() >= max_allowed_vertices {
refinement_complete = false;
break;
}
// Step 1: Check for forcibly splitted segments.
if let Some(forcibly_split_segment) = forcibly_split_segments_buffer.pop() {
self.resolve_encroachment(
&mut encroached_segment_candidates,
&mut skinny_triangle_candidates,
&mut constraint_edge_map,
forcibly_split_segment,
&mut excluded_faces,
);
continue;
}
// Step 2: Check for encroached segments.
if let Some(segment_candidate) = encroached_segment_candidates.pop_front() {
// Check both adjacent faces of any candidate for encroachment.
for edge in segment_candidate.directed_edges() {
let edge = self.directed_edge(edge);
let is_excluded = edge
.face()
.as_inner()
.map(|face| excluded_faces.contains(&face.fix()))
.unwrap_or(true);
if is_excluded {
continue;
}
if let Some(opposite_position) = edge.opposite_position() {
if is_encroaching_edge(
edge.from().position(),
edge.to().position(),
opposite_position,
) {
// The edge is encroaching
self.resolve_encroachment(
&mut encroached_segment_candidates,
&mut skinny_triangle_candidates,
&mut constraint_edge_map,
segment_candidate,
&mut excluded_faces,
);
}
}
}
continue;
}
// Step 3: Take the next skinny triangle candidate
if let Some(face) = skinny_triangle_candidates.pop_front() {
if excluded_faces.contains(&face) {
continue;
}
let face = self.face(face);
let (shortest_edge, _) = face.shortest_edge();
let refinement_hint = parameters.get_refinement_hint(face);
if refinement_hint == RefinementHint::Ignore {
// Triangle is fine as is and can be skipped
continue;
}
if refinement_hint == RefinementHint::ShouldRefine
&& !Self::is_fixed_edge(shortest_edge.as_undirected())
{
// Check if the shortest edge ends in two input edges that span a small
// input angle.
//
// Such an input angle cannot be maximized as that would require flipping at least one of its edges.
//
// See Miller, Gary; Pav, Steven; Walkington, Noel (2005). "When and why Delaunay refinement algorithms work".
// for more details on this idea.
let original_from = constraint_edge_map
.get(&shortest_edge.from().fix())
.copied();
let original_to = constraint_edge_map.get(&shortest_edge.to().fix()).copied();
for from_input_vertex in original_from.iter().flatten() {
for to_input_vertex in original_to.iter().flatten() {
if from_input_vertex == to_input_vertex {
// The two edges are input segments and join a common segment.
// Don't attempt to subdivide it any further, this is as good as we can get.
continue 'main_loop;
}
}
}
}
// Continue to resolve the skinny face
let circumcenter = face.circumcenter();
let locate_hint = face.vertices()[0].fix();
assert!(forcibly_split_segments_buffer.is_empty());
legalize_edges_buffer.clear();
// "Simulate" inserting the circumcenter by locating the insertion site and identifying which edges
// would need to be flipped (legalized) by the insertion. If any of these edges is fixed, an
// encroachment with this edge is found.
//
// First step: fill `legalize_edges_buffer` with the initial set of edges that would need to be legalized
// if the triangle's circumcenter would be inserted.
match self.locate_with_hint(circumcenter, locate_hint) {
OnEdge(edge) => {
let edge = self.directed_edge(edge);
if parameters.keep_constraint_edges && edge.is_constraint_edge() {
continue;
}
if edge.is_constraint_edge() {
// Splitting constraint edges may require updating the `excluded_faces` set.
// This is a little cumbersome, we'll re-use the existing implementation of edge
// splitting (see function resolve_encroachment).
forcibly_split_segments_buffer.push(edge.fix().as_undirected());
continue;
}
for edge in [edge, edge.rev()] {
if !edge.is_outer_edge() {
legalize_edges_buffer.extend([edge.next().fix(), edge.prev().fix()])
}
}
}
OnFace(face_under_circumcenter) => {
if excluded_faces.contains(&face_under_circumcenter) {
continue;
}
legalize_edges_buffer.extend(
self.face(face_under_circumcenter)
.adjacent_edges()
.map(|edge| edge.fix()),
);
}
OutsideOfConvexHull(_) => continue,
OnVertex(_) => continue,
NoTriangulation => unreachable!(),
};
let mut is_encroaching = false;
// Next step: Perform the regular legalization procedure by "simulating" edge flips
while let Some(edge) = legalize_edges_buffer.pop() {
let edge = self.directed_edge(edge);
let [from, to] = edge.as_undirected().positions();
if Self::is_fixed_edge(edge.as_undirected()) {
if is_encroaching_edge(from, to, circumcenter) {
// We found an encroaching edge! Makes sure that we won't attempt to
// insert the circumcenter.
is_encroaching = true;
if !parameters.keep_constraint_edges || !edge.is_constraint_edge() {
// New circumcenter would encroach a constraint edge. Don't insert the circumcenter
// but force splitting the segment
forcibly_split_segments_buffer.push(edge.as_undirected().fix());
}
}
continue; // Don't actually flip the edge as it's fixed - continue with any other edge instead.
}
// edge is not a fixed edge. Check if it needs to be legalized.
// We've already checked that this edge is not part of the convex hull - unwrap is safe
let opposite = edge.rev().opposite_position().unwrap();
let from = edge.from().position();
let to = edge.to().position();
let should_flip =
math::contained_in_circumference(opposite, to, from, circumcenter);
if should_flip {
let e1 = edge.rev().next().fix();
let e2 = edge.rev().prev().fix();
legalize_edges_buffer.push(e1);
legalize_edges_buffer.push(e2);
}
}
if !is_encroaching {
// The circumcenter doesn't encroach any segment. Continue really inserting it.
let new_vertex = self
.insert_with_hint(circumcenter.into(), locate_hint)
.expect("Failed to insert circumcenter, likely due to loss of precision. Consider refining with fewer additional vertices.");
// Add all new and changed faces to the skinny candidate list
skinny_triangle_candidates.extend(
self.vertex(new_vertex)
.out_edges()
.flat_map(|edge| edge.face().fix().as_inner()),
);
} else if !forcibly_split_segments_buffer.is_empty() {
// Revisit this face later. Since the encroached edge will have been split in the next iteration,
// inserting the circumcenter might succeed this time around.
skinny_triangle_candidates.push_back(face.fix());
}
} else {
// Done! This branch is reached if no skinny triangle could be identified anymore.
break;
}
}
RefinementResult {
excluded_faces: excluded_faces.iter().copied().collect(),
refinement_complete,
}
}
fn is_fixed_edge(edge: UndirectedEdgeHandle<V, DE, CdtEdge<UE>, F>) -> bool {
edge.is_constraint_edge() || edge.is_part_of_convex_hull()
}
fn resolve_encroachment(
&mut self,
encroached_segments_buffer: &mut VecDeque<FixedUndirectedEdgeHandle>,
encroached_faces_buffer: &mut VecDeque<FixedFaceHandle<InnerTag>>,
constraint_edge_map: &mut HashMap<FixedVertexHandle, [FixedVertexHandle; 2]>,
encroached_edge: FixedUndirectedEdgeHandle,
excluded_faces: &mut HashSet<FixedFaceHandle<InnerTag>>,
) {
// Resolves an encroachment by splitting the encroached edge. Since this reduces the diametral circle, this will
// eventually get rid of the encroachment completely.
//
// There are a few details that make this more complicated:
//
// # Runaway encroachment
// Any input angle less than 45 degrees may lead to a "runaway encroachment". In such a situation, any of the
// angle's edges will encroach *the other* edge. This goes on forever, subdividing the edges infinitely.
//
// To work around this, spade will split edges at their center position only *once*.
// Any subsegment will not be split at its center position but *rounded towards the nearest power of 2*.
// With this behavior, neighboring edges will eventually share vertices equally far away from the offending angle's
// apex vertex. Points and edges in such a configuration cannot encroach each other. Refer to the original paper
// by Ruppert for more details.
//
// # Keeping track of which edges and faces have changed
// Since `resolve_encroachment` will create new edges and faces, we need to add those to the existing buffers as
// appropriate. This becomes a little convoluted when supporting all different refinement modes, e.g. excluded faces.
let segment = self.directed_edge(encroached_edge.as_directed());
let [v0, v1] = segment.vertices();
let half = Into::<V::Scalar>::into(0.5f32);
let v0_constraint_vertex = constraint_edge_map.get(&v0.fix()).copied();
let v1_constraint_vertex = constraint_edge_map.get(&v1.fix()).copied();
let (weight0, weight1) = match (v0_constraint_vertex, v1_constraint_vertex) {
(None, None) => {
// Split the segment exactly in the middle if it has not been split before.
(half, half)
}
_ => {
// One point is a steiner point, another point isn't. This will trigger rounding the distance to
// the nearest power of two to prevent runaway encroachment.
let half_length = segment.length_2().sqrt() * half;
let nearest_power_of_two = nearest_power_of_two(half_length);
let other_vertex_weight = half * nearest_power_of_two / half_length;
let original_vertex_weight = Into::<V::Scalar>::into(1.0) - other_vertex_weight;
if v0_constraint_vertex.is_none() {
// Orient the weight towards to original vertex. This makes sure that any edge participating in
// a runaway encroachment will end up with the same distance to the non-steiner (original) point.
(original_vertex_weight, other_vertex_weight)
} else {
(other_vertex_weight, original_vertex_weight)
}
}
};
let final_position = v0.position().mul(weight0).add(v1.position().mul(weight1));
if !validate_constructed_vertex(final_position, segment) {
return;
}
let [is_left_side_excluded, is_right_side_excluded] =
[segment.face(), segment.rev().face()].map(|face| {
face.as_inner()
.map_or(false, |face| excluded_faces.contains(&face.fix()))
});
let is_constraint_edge = segment.is_constraint_edge();
// Perform the actual split!
let segment = segment.fix();
let (v0, v1) = (v0.fix(), v1.fix());
let (new_vertex, [e1, e2]) = self.insert_on_edge(segment, final_position.into());
let original_vertices = v0_constraint_vertex
.or(v1_constraint_vertex)
.unwrap_or([v0, v1]);
constraint_edge_map.insert(new_vertex, original_vertices);
if is_constraint_edge {
// Make sure to update the constraint edges count as required.
self.handle_legal_edge_split([e1, e2]);
}
let (h1, h2) = (self.directed_edge(e1), self.directed_edge(e2));
if is_left_side_excluded {
// Any newly added face on the left becomes an excluded face
excluded_faces.insert(h1.face().fix().as_inner().unwrap());
excluded_faces.insert(h2.face().fix().as_inner().unwrap());
}
if is_right_side_excluded {
// Any newly added face on the right becomes an excluded face
excluded_faces.insert(h1.rev().face().fix().as_inner().unwrap());
excluded_faces.insert(h2.rev().face().fix().as_inner().unwrap());
}
self.legalize_vertex(new_vertex);
// Any of the faces that share an outgoing edge may be changed by the vertex insertion. Make sure that all of them
// will be revisited.
encroached_faces_buffer.extend(
self.vertex(new_vertex)
.out_edges()
.flat_map(|edge| edge.face().fix().as_inner()),
);
// Neighboring edges may have become encroached. Check if they need to be added to the encroached segment buffer.
encroached_segments_buffer.extend(
self.vertex(new_vertex)
.out_edges()
.filter(|edge| !edge.is_outer_edge())
.map(|edge| edge.next().as_undirected())
.filter(|edge| Self::is_fixed_edge(*edge))
.map(|edge| edge.fix()),
);
// Update encroachment candidates - any of the resulting edges may still be in an encroaching state.
encroached_segments_buffer.push_back(e1.as_undirected());
encroached_segments_buffer.push_back(e2.as_undirected());
}
}
/// Check if final_position would violate a ordering constraint. This is needed since final_position is constructed
/// with imprecise calculations and may not even be representable in the underlying floating point type. In rare cases,
/// this means that the newly formed triangles would not be ordered ccw.
/// We'll simply skip these refinements steps as it should only happen for very bad input geometries.
///
/// Before (v0 = segment.from(), v1 = segment.to()):
/// v2
/// / \
/// v0 --> v1
/// \ /
/// v3
///
/// After (before legalizing) - return if any face would be ordered cw
/// v2
/// / | \
/// v0 -v-> v1
/// \ | /
/// v3
fn validate_constructed_vertex<V, DE, UE, F>(
final_position: Point2<V::Scalar>,
segment: DirectedEdgeHandle<V, DE, UE, F>,
) -> bool
where
V: HasPosition,
{
use math::is_ordered_ccw;
let [v0, v1] = segment.positions();
if math::validate_vertex(&final_position).is_err() {
return false;
}
if let Some(v2) = segment.opposite_position() {
if is_ordered_ccw(v0, v2, final_position) || is_ordered_ccw(v2, v1, final_position) {
return false;
}
}
if let Some(v3) = segment.rev().opposite_position() {
if is_ordered_ccw(v3, v0, final_position) || is_ordered_ccw(v1, v3, final_position) {
return false;
}
}
true
}
fn is_encroaching_edge<S: SpadeNum + Float>(
edge_from: Point2<S>,
edge_to: Point2<S>,
query_point: Point2<S>,
) -> bool {
let edge_center = edge_from.add(edge_to).mul(0.5f32.into());
let radius_2 = edge_from.distance_2(edge_to) * 0.25.into();
query_point.distance_2(edge_center) < radius_2
}
fn nearest_power_of_two<S: Float + SpadeNum>(input: S) -> S {
input.log2().round().exp2()
}
fn calculate_outer_faces<V: HasPosition, DE: Default, UE: Default, F: Default, L>(
triangulation: &ConstrainedDelaunayTriangulation<V, DE, UE, F, L>,
) -> HashSet<FixedFaceHandle<InnerTag>>
where
L: HintGenerator<<V as HasPosition>::Scalar>,
{
if triangulation.all_vertices_on_line() {
return HashSet::new();
}
// Determine excluded faces by "peeling of" outer layers and adding them to an outer layer set.
// This needs to be done repeatedly to also get inner "holes" within the triangulation
let mut inner_faces = HashSet::new();
let mut outer_faces = HashSet::new();
let mut current_todo_list: Vec<_> =
triangulation.convex_hull().map(|edge| edge.rev()).collect();
let mut next_todo_list = Vec::new();
let mut return_outer_faces = true;
loop {
// Every iteration of the outer while loop will peel of the outmost layer and pre-populate the
// next, inner layer.
while let Some(next_edge) = current_todo_list.pop() {
let (list, face_set) = if next_edge.is_constraint_edge() {
// We're crossing a constraint edge - add that face to the *next* todo list
(&mut next_todo_list, &mut inner_faces)
} else {
(&mut current_todo_list, &mut outer_faces)
};
if let Some(inner) = next_edge.face().as_inner() {
if face_set.insert(inner.fix()) {
list.push(next_edge.prev().rev());
list.push(next_edge.next().rev());
}
}
}
if next_todo_list.is_empty() {
break;
}
core::mem::swap(&mut inner_faces, &mut outer_faces);
core::mem::swap(&mut next_todo_list, &mut current_todo_list);
return_outer_faces = !return_outer_faces;
}
if return_outer_faces {
outer_faces
} else {
inner_faces
}
}
#[cfg(test)]
mod test {
use super::HashSet;
use crate::{
test_utilities::{random_points_with_seed, SEED},
AngleLimit, ConstrainedDelaunayTriangulation, InsertionError, Point2, RefinementParameters,
Triangulation as _,
};
pub type Cdt = ConstrainedDelaunayTriangulation<Point2<f64>>;
#[test]
fn test_zero_angle_limit_dbg() {
let limit = AngleLimit::from_deg(0.0);
let debug_string = alloc::format!("{:?}", limit);
assert_eq!(debug_string, "AngleLimit { angle limit (deg): 0.0 }");
}
#[test]
fn test_zero_angle_limit() -> Result<(), InsertionError> {
let limit = AngleLimit::from_deg(0.0);
assert_eq!(limit.radius_to_shortest_edge_limit(), f64::INFINITY);
let mut vertices = random_points_with_seed(20, SEED);
// Insert an artificial outer boundary that will prevent the convex hull from being encroached.
// This should prevent any refinement.
vertices.push(Point2::new(100.0, 100.0));
vertices.push(Point2::new(100.0, 0.0));
vertices.push(Point2::new(100.0, -100.0));
vertices.push(Point2::new(0.0, -100.0));
vertices.push(Point2::new(-100.0, -100.0));
vertices.push(Point2::new(-100.0, 0.0));
vertices.push(Point2::new(-100.0, 100.0));
vertices.push(Point2::new(0.0, 100.0));
let mut cdt = Cdt::bulk_load(vertices)?;
let initial_num_vertices = cdt.num_vertices();
cdt.refine(RefinementParameters::new().with_angle_limit(limit));
assert_eq!(initial_num_vertices, cdt.num_vertices());
cdt.refine(RefinementParameters::new());
assert!(initial_num_vertices < cdt.num_vertices());
Ok(())
}
#[test]
fn test_nearest_power_of_two() {
use super::nearest_power_of_two;
for i in 1..400u32 {
let log = (i as f64).log2() as u32;
let nearest = nearest_power_of_two(i as f64);
assert!((1 << log) as f64 == nearest || (1 << (log + 1)) as f64 == nearest);
}
assert_eq!(0.25, nearest_power_of_two(0.25));
assert_eq!(0.25, nearest_power_of_two(0.27));
assert_eq!(0.5, nearest_power_of_two(0.5));
assert_eq!(1.0, nearest_power_of_two(0.75));
assert_eq!(2.0, nearest_power_of_two(1.5));
assert_eq!(2.0, nearest_power_of_two(2.5));
assert_eq!(4.0, nearest_power_of_two(3.231));
assert_eq!(4.0, nearest_power_of_two(4.0));
}
#[test]
fn test_small_refinement() -> Result<(), InsertionError> {
let vertices = random_points_with_seed(20, SEED);
let mut cdt = Cdt::bulk_load(vertices)?;
let mut peekable = cdt.fixed_vertices().peekable();
while let (Some(p0), Some(p1)) = (peekable.next(), peekable.peek()) {
if !cdt.can_add_constraint(p0, *p1) {
cdt.add_constraint(p0, *p1);
}
}
cdt.refine(Default::default());
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_sharp_angle_refinement() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
// This sharp angle should only be subdivided once rather than infinitely often.
cdt.add_constraint_edge(Point2::new(-40.0, 80.0), Point2::new(0.0, 0.0))?;
cdt.add_constraint_edge(Point2::new(0.0, 0.0), Point2::new(4.0, 90.0))?;
let refinement_parameters = RefinementParameters::new()
.with_max_additional_vertices(10)
.with_angle_limit(AngleLimit::from_radius_to_shortest_edge_ratio(1.0));
let result = cdt.refine(refinement_parameters);
assert!(result.refinement_complete);
cdt.cdt_sanity_check();
Ok(())
}
#[test]
fn test_simple_exclude_outer_faces() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let vertices = [
Point2::new(-1.0, 1.0),
Point2::new(0.0, 0.5),
Point2::new(1.0, 1.0),
Point2::new(1.0, -1.0),
Point2::new(-1.0, -1.0),
Point2::new(-1.0, 1.0),
];
for points in vertices.windows(2) {
let p1 = points[0];
let p2 = points[1];
cdt.add_constraint_edge(p1, p2)?;
}
let excluded_faces = super::calculate_outer_faces(&cdt);
let v2 = cdt.locate_vertex(Point2::new(1.0, 1.0)).unwrap().fix();
let v0 = cdt.locate_vertex(Point2::new(-1.0, 1.0)).unwrap().fix();
let excluded_face = cdt
.get_edge_from_neighbors(v2, v0)
.and_then(|edge| edge.face().as_inner())
.unwrap()
.fix();
assert_eq!(
excluded_faces,
HashSet::from_iter(core::iter::once(excluded_face))
);
Ok(())
}
fn test_shape() -> [Point2<f64>; 6] {
[
Point2::new(-1.0, 1.0),
Point2::new(0.0, 0.7),
Point2::new(1.0, 1.0),
Point2::new(2.0, 0.0),
Point2::new(0.5, -1.0),
Point2::new(-0.5, -2.0),
]
}
#[test]
fn test_exclude_outer_faces() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
let scale_factors = [1.0, 2.0, 3.0, 4.0];
let mut current_excluded_faces = super::calculate_outer_faces(&cdt);
assert!(current_excluded_faces.is_empty());
for factor in scale_factors {
cdt.add_constraint_edges(test_shape().iter().map(|p| p.mul(factor)), true)?;
let next_excluded_faces = super::calculate_outer_faces(&cdt);
assert!(current_excluded_faces.len() < next_excluded_faces.len());
current_excluded_faces = next_excluded_faces;
assert!(current_excluded_faces.len() < cdt.num_inner_faces());
}
Ok(())
}
#[test]
fn test_exclude_outer_faces_with_non_closed_mesh() -> Result<(), InsertionError> {
let mut cdt = Cdt::new();
cdt.add_constraint_edges(test_shape(), false)?;
let refinement_result = cdt.refine(
RefinementParameters::new()
.exclude_outer_faces(true)
.with_angle_limit(AngleLimit::from_radius_to_shortest_edge_ratio(
f64::INFINITY,
)),
);
assert_eq!(
refinement_result.excluded_faces.len(),
cdt.num_inner_faces()
);
cdt.refine(RefinementParameters::new().exclude_outer_faces(true));
Ok(())
}
#[test]
fn test_failing_refinement() -> Result<(), InsertionError> {
// f32 is important - only then, rounding errors will lead to violating the ccw property when
// the refinement splits an edge. See issue #96
let mut cdt = ConstrainedDelaunayTriangulation::<Point2<f32>>::new();
#[rustfmt::skip]
let vert = [
[Point2 { x: -50.023544f32, y: -25.29227 }, Point2 { x: 754.23883, y: -25.29227 }],
[Point2 { x: 754.23883, y: 508.68994 }, Point2 { x: -50.023544, y: 508.68994 }],
[Point2 { x: -44.20742, y: 316.5185 }, Point2 { x: -50.023544, y: 318.19534 }],
[Point2 { x: 11.666269, y: 339.4947 }, Point2 { x: 15.110367, y: 335.44138 }],
[Point2 { x: 335.06403, y: 122.91455 }, Point2 { x: 340.15436, y: 132.04283 }],
[Point2 { x: 446.92468, y: -6.7025666 }, Point2 { x: 458.70944, y: 14.341333 }],
[Point2 { x: 458.70944, y: 14.341333 }, Point2 { x: 471.58313, y: 7.1453195 }],
[Point2 { x: 467.80966, y: 0.40460825 }, Point2 { x: 468.6454, y: -0.061800003 }],
[Point2 { x: 464.55957, y: -7.3688636 }, Point2 { x: 465.48816, y: -7.890797 }],
[Point2 { x: 465.48816, y: -7.890797 }, Point2 { x: 461.57117, y: -14.898027 }],
[Point2 { x: 465.42877, y: 10.587858 }, Point2 { x: 453.93112, y: 17.01763 }],
];
for [start, end] in vert {
cdt.add_constraint_edge(start, end)?;
}
cdt.refine(Default::default());
cdt.cdt_sanity_check();
Ok(())
}
}