1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#![deny(unsafe_code, missing_docs)]

use nalgebra as na;

use na::{
    allocator::Allocator, base::storage::Owned, DefaultAllocator, Dim, Dyn, Matrix3, OMatrix,
    RealField, SMatrix, Vector3, U1, U3,
};

use itertools::izip;

use crate::{CoordinateSystem, Error, Points, Ray};

/// Iter::Sum is not implemented for R.
macro_rules! sum_as_f64 {
    ($iter:expr,$R:ty) => {{
        $iter
            .map(|x| na::try_convert::<$R, f64>(x.clone()).unwrap())
            .sum()
    }};
}
// just like above but without * dereference.
macro_rules! refsum_as_f64 {
    ($iter:expr,$R:ty) => {{
        $iter.map(|x| na::try_convert::<$R, f64>(x).unwrap()).sum()
    }};
}

/// convert from specialized type (e.g. f64) into generic type $R
macro_rules! despecialize {
    ($a:expr, $R:ty, $rows:expr, $cols:expr) => {{
        SMatrix::<$R, $rows, $cols>::from_iterator(
            $a.as_slice().into_iter().map(|x| na::convert(*x)),
        )
    }};
}

/// A single point. (This is a `Points` instance defined to have only one point).
pub type SinglePoint<Coords, R> = Points<Coords, R, U1, Owned<R, U1, U3>>;

/// Return the 3D point which is the best intersection of rays.
#[allow(non_snake_case)]
pub fn best_intersection_of_rays<Coords, R>(
    rays: &[Ray<Coords, R>],
) -> Result<SinglePoint<Coords, R>, Error>
where
    Coords: CoordinateSystem,
    R: RealField,
    DefaultAllocator: Allocator<R, Dyn, U3>,
    DefaultAllocator: Allocator<R, U1, Dyn>,
    DefaultAllocator: Allocator<R, U1, U3>,
{
    if rays.len() < 2 {
        return Err(Error::MinimumTwoRaysNeeded);
    }

    let npts = Dyn(rays.len());
    let u1 = U1::from_usize(1);
    let u3 = U3::from_usize(3);

    let mut line_dirs = OMatrix::<R, Dyn, U3>::zeros_generic(npts, u3);
    let mut line_points = OMatrix::<R, Dyn, U3>::zeros_generic(npts, u3);

    for i in 0..rays.len() {
        let ray_wc = rays.get(i).unwrap();
        let d = &ray_wc.direction;

        // Normalize the vector length.
        let dir = nalgebra::base::Unit::new_normalize(Vector3::new(
            d.data.0[0][0].clone(),
            d.data.0[1][0].clone(),
            d.data.0[2][0].clone(),
        ));

        line_dirs[(i, 0)] = dir[0].clone();
        line_dirs[(i, 1)] = dir[1].clone();
        line_dirs[(i, 2)] = dir[2].clone();

        line_points[(i, 0)] = ray_wc.center.data.0[0][0].clone();
        line_points[(i, 1)] = ray_wc.center.data.0[1][0].clone();
        line_points[(i, 2)] = ray_wc.center.data.0[2][0].clone();
    }

    let mut xxm1 = OMatrix::<R, U1, Dyn>::zeros_generic(u1, npts);
    let mut yym1 = OMatrix::<R, U1, Dyn>::zeros_generic(u1, npts);
    let mut zzm1 = OMatrix::<R, U1, Dyn>::zeros_generic(u1, npts);
    let mut xy = OMatrix::<R, U1, Dyn>::zeros_generic(u1, npts);
    let mut xz = OMatrix::<R, U1, Dyn>::zeros_generic(u1, npts);
    let mut yz = OMatrix::<R, U1, Dyn>::zeros_generic(u1, npts);

    // TODO element-wise add, mul with nalgebra matrices

    let nx = line_dirs.column(0);
    let ny = line_dirs.column(1);
    let nz = line_dirs.column(2);

    let minusone: R = na::convert(-1.0);

    for (x, xxm1) in nx.into_iter().zip(xxm1.iter_mut()) {
        *xxm1 = x.clone().powi(2).add(minusone.clone());
    }

    for (y, yym1) in ny.into_iter().zip(yym1.iter_mut()) {
        *yym1 = y.clone().powi(2).add(minusone.clone());
    }

    for (z, zzm1) in nz.into_iter().zip(zzm1.iter_mut()) {
        *zzm1 = z.clone().powi(2).add(minusone.clone());
    }

    for (x, y, xy) in izip!(nx.into_iter(), ny.into_iter(), xy.iter_mut()) {
        *xy = x.clone() * y.clone();
    }

    for (x, z, xz) in izip!(nx.into_iter(), nz.into_iter(), xz.iter_mut()) {
        *xz = x.clone() * z.clone();
    }

    for (y, z, yz) in izip!(ny.into_iter(), nz.into_iter(), yz.iter_mut()) {
        *yz = y.clone() * z.clone();
    }

    let SXX: f64 = sum_as_f64!(xxm1.iter(), R);
    let SYY: f64 = sum_as_f64!(yym1.iter(), R);
    let SZZ: f64 = sum_as_f64!(zzm1.iter(), R);
    let SXY: f64 = sum_as_f64!(xy.iter(), R);
    let SXZ: f64 = sum_as_f64!(xz.iter(), R);
    let SYZ: f64 = sum_as_f64!(yz.iter(), R);

    let S = Matrix3::new(SXX, SXY, SXZ, SXY, SYY, SYZ, SXZ, SYZ, SZZ);

    let px = line_points.column(0);
    let py = line_points.column(1);
    let pz = line_points.column(2);

    let xt1 = px
        .iter()
        .zip(xxm1.iter())
        .map(|(a, b)| a.clone() * b.clone());
    let xt2 = py.iter().zip(xy.iter()).map(|(a, b)| a.clone() * b.clone());
    let xt3 = pz.iter().zip(xz.iter()).map(|(a, b)| a.clone() * b.clone());
    let CX: f64 = refsum_as_f64!(izip!(xt1, xt2, xt3).map(|(t1, t2, t3)| t1 + t2 + t3), R);
    let CX: R = na::convert(CX);

    let yt1 = px.iter().zip(xy.iter()).map(|(a, b)| a.clone() * b.clone());
    let yt2 = py
        .iter()
        .zip(yym1.iter())
        .map(|(a, b)| a.clone() * b.clone());
    let yt3 = pz.iter().zip(yz.iter()).map(|(a, b)| a.clone() * b.clone());
    let CY: f64 = refsum_as_f64!(izip!(yt1, yt2, yt3).map(|(t1, t2, t3)| t1 + t2 + t3), R);
    let CY: R = na::convert(CY);

    let zt1 = px.iter().zip(xz.iter()).map(|(a, b)| a.clone() * b.clone());
    let zt2 = py.iter().zip(yz.iter()).map(|(a, b)| a.clone() * b.clone());
    let zt3 = pz
        .iter()
        .zip(zzm1.iter())
        .map(|(a, b)| a.clone() * b.clone());
    let CZ: f64 = refsum_as_f64!(izip!(zt1, zt2, zt3).map(|(t1, t2, t3)| t1 + t2 + t3), R);
    let CZ: R = na::convert(CZ);

    let C = Vector3::new(CX, CY, CZ);

    let s_f64_pinv = my_pinv(&S)?;
    let s_pinv = despecialize!(s_f64_pinv, R, 3, 3);
    let r: Vector3<R> = s_pinv * C;

    let mut result = crate::Points::new(nalgebra::OMatrix::<R, U1, U3>::zeros_generic(u1, u3));
    for j in 0..3 {
        result.data[(0, j)] = r[j].clone();
    }
    Ok(result)
}

fn my_pinv<R: RealField>(m: &SMatrix<R, 3, 3>) -> Result<SMatrix<R, 3, 3>, Error> {
    Ok(
        na::linalg::SVD::try_new(m.clone(), true, true, na::convert(1e-7), 100)
            .ok_or(Error::SvdFailed)?
            .pseudo_inverse(na::convert(1.0e-7))
            .unwrap(),
    )
    // The unwrap() above is safe because, as of nalgebra 0.19, this could only error if the SVD has not been computed.
    // But this is not possible here, so the unwrap() should never result in a panic.
}

#[cfg(test)]
mod tests {
    use nalgebra::Vector3;

    use crate::{Camera, ExtrinsicParameters, IntrinsicParametersPerspective, PerspectiveParams};

    use super::*;

    #[test]
    fn roundtrip() {
        let i1: IntrinsicParametersPerspective<_> = PerspectiveParams {
            fx: 100.0,
            fy: 102.0,
            skew: 0.1,
            cx: 321.0,
            cy: 239.9,
        }
        .into();
        let e1 = ExtrinsicParameters::from_view(
            &Vector3::new(1.2, 3.4, 5.6),                                // camcenter
            &Vector3::new(2.2, 3.4, 5.6),                                // lookat
            &nalgebra::Unit::new_normalize(Vector3::new(0.0, 0.0, 1.0)), // up
        );
        let cam1 = Camera::new(i1, e1);

        let i2: IntrinsicParametersPerspective<_> = PerspectiveParams {
            fx: 200.0,
            fy: 202.0,
            skew: 0.01,
            cx: 321.0,
            cy: 239.9,
        }
        .into();
        let e2 = ExtrinsicParameters::from_view(
            &Vector3::new(3.4, 1.2, 5.6),                                // camcenter
            &Vector3::new(2.2, 3.4, 5.6),                                // lookat
            &nalgebra::Unit::new_normalize(Vector3::new(0.0, 0.0, 1.0)), // up
        );
        let cam2 = Camera::new(i2, e2);

        let expected_point = Points::new(SMatrix::<_, 1, 3>::new(2.21, 3.41, 5.61));

        let image1 = cam1.world_to_pixel(&expected_point);

        let image2 = cam2.world_to_pixel(&expected_point);

        let ray1 = cam1.pixel_to_world(&image1).to_single_ray();
        let ray2 = cam2.pixel_to_world(&image2).to_single_ray();
        let rays = [ray1, ray2];

        let point3d = best_intersection_of_rays(&rays).unwrap();

        // check reprojection for cam1
        let image1_actual = cam1.world_to_pixel(&point3d);
        approx::assert_abs_diff_eq!(
            image1_actual.data,
            image1.data,
            epsilon = nalgebra::convert(1e-10)
        );

        // check reprojection for cam2
        let image2_actual = cam2.world_to_pixel(&point3d);
        approx::assert_abs_diff_eq!(
            image2_actual.data,
            image2.data,
            epsilon = nalgebra::convert(1e-10)
        );

        // check 3d reconstruction
        approx::assert_abs_diff_eq!(
            point3d.data,
            expected_point.data,
            epsilon = nalgebra::convert(1e-10)
        );
    }
}