1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
//! This crate provides macros for runtime CPU feature detection. It's intended
//! as a stopgap until Rust [RFC 2725] adding first-class target feature detection
//! macros to `libcore` is implemented.
//!
//! # Supported target architectures
//!
//! *NOTE: target features with an asterisk are unstable (nightly-only) and
//! subject to change to match upstream name changes in the Rust standard
//! library.
//!
//! ## `aarch64`
//!
//! Linux, iOS, and macOS/ARM only (ARM64 does not support OS-independent feature detection)
//!
//! Target features:
//!
//! - `aes`*
//! - `sha2`*
//! - `sha3`*
//!
//! Linux only
//!
//! - `sm4`*
//!
//! ## `loongarch64`
//!
//! Linux only (LoongArch64 does not support OS-independent feature detection)
//!
//! Target features:
//!
//! - `lam`*
//! - `ual`*
//! - `fpu`*
//! - `lsx`*
//! - `lasx`*
//! - `crc32`*
//! - `complex`*
//! - `crypto`*
//! - `lvz`*
//! - `lbt.x86`*
//! - `lbt.arm`*
//! - `lbt.mips`*
//! - `ptw`*
//!
//! ## `x86`/`x86_64`
//!
//! OS independent and `no_std`-friendly
//!
//! Target features:
//!
//! - `adx`
//! - `aes`
//! - `avx`
//! - `avx2`
//! - `avx512bw`*
//! - `avx512cd`*
//! - `avx512dq`*
//! - `avx512er`*
//! - `avx512f`*
//! - `avx512ifma`*
//! - `avx512pf`*
//! - `avx512vl`*
//! - `bmi1`
//! - `bmi2`
//! - `fma`,
//! - `mmx`
//! - `pclmulqdq`
//! - `popcnt`
//! - `rdrand`
//! - `rdseed`
//! - `sgx`
//! - `sha`
//! - `sse`
//! - `sse2`
//! - `sse3`
//! - `sse4.1`
//! - `sse4.2`
//! - `ssse3`
//!
//! If you would like detection support for a target feature which is not on
//! this list, please [open a GitHub issue][gh].
//!
//! # Example
//! ```
//! # #[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
//! # {
//! // This macro creates `cpuid_aes_sha` module
//! cpufeatures::new!(cpuid_aes_sha, "aes", "sha");
//!
//! // `token` is a Zero Sized Type (ZST) value, which guarantees
//! // that underlying static storage got properly initialized,
//! // which allows to omit initialization branch
//! let token: cpuid_aes_sha::InitToken = cpuid_aes_sha::init();
//!
//! if token.get() {
//! println!("CPU supports both SHA and AES extensions");
//! } else {
//! println!("SHA and AES extensions are not supported");
//! }
//!
//! // If stored value needed only once you can get stored value
//! // omitting the token
//! let val = cpuid_aes_sha::get();
//! assert_eq!(val, token.get());
//!
//! // Additionally you can get both token and value
//! let (token, val) = cpuid_aes_sha::init_get();
//! assert_eq!(val, token.get());
//! # }
//! ```
//!
//! Note that if all tested target features are enabled via compiler options
//! (e.g. by using `RUSTFLAGS`), the `get` method will always return `true`
//! and `init` will not use CPUID instruction. Such behavior allows
//! compiler to completely eliminate fallback code.
//!
//! After first call macro caches result and returns it in subsequent
//! calls, thus runtime overhead for them is minimal.
//!
//! [RFC 2725]: https://github.com/rust-lang/rfcs/pull/2725
//! [gh]: https://github.com/RustCrypto/utils/issues/new?title=cpufeatures:%20requesting%20support%20for%20CHANGEME%20target%20feature
#![no_std]
#![doc(
html_logo_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg",
html_favicon_url = "https://raw.githubusercontent.com/RustCrypto/media/6ee8e381/logo.svg"
)]
#[cfg(not(miri))]
#[cfg(target_arch = "aarch64")]
#[doc(hidden)]
pub mod aarch64;
#[cfg(not(miri))]
#[cfg(target_arch = "loongarch64")]
#[doc(hidden)]
pub mod loongarch64;
#[cfg(not(miri))]
#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
mod x86;
#[cfg(miri)]
mod miri;
#[cfg(not(any(
target_arch = "aarch64",
target_arch = "loongarch64",
target_arch = "x86",
target_arch = "x86_64"
)))]
compile_error!("This crate works only on `aarch64`, `loongarch64`, `x86`, and `x86-64` targets.");
/// Create module with CPU feature detection code.
#[macro_export]
macro_rules! new {
($mod_name:ident, $($tf:tt),+ $(,)?) => {
mod $mod_name {
use core::sync::atomic::{AtomicU8, Ordering::Relaxed};
const UNINIT: u8 = u8::max_value();
static STORAGE: AtomicU8 = AtomicU8::new(UNINIT);
/// Initialization token
#[derive(Copy, Clone, Debug)]
pub struct InitToken(());
impl InitToken {
/// Get initialized value
#[inline(always)]
pub fn get(&self) -> bool {
$crate::__unless_target_features! {
$($tf),+ => {
STORAGE.load(Relaxed) == 1
}
}
}
}
/// Initialize underlying storage if needed and get
/// stored value and initialization token.
#[inline]
pub fn init_get() -> (InitToken, bool) {
let res = $crate::__unless_target_features! {
$($tf),+ => {
// Relaxed ordering is fine, as we only have a single atomic variable.
let val = STORAGE.load(Relaxed);
if val == UNINIT {
let res = $crate::__detect_target_features!($($tf),+);
STORAGE.store(res as u8, Relaxed);
res
} else {
val == 1
}
}
};
(InitToken(()), res)
}
/// Initialize underlying storage if needed and get
/// initialization token.
#[inline]
pub fn init() -> InitToken {
init_get().0
}
/// Initialize underlying storage if needed and get
/// stored value.
#[inline]
pub fn get() -> bool {
init_get().1
}
}
};
}