1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
//! Module with common integer formatting logic for implementing the standard
//! library `core::fmt` traits.
//!
//! Most of these implementations were ported from the Rust standard library's
//! implementation for primitive integer types:
//! <https://doc.rust-lang.org/src/core/fmt/num.rs.html>
use crate::uint::U256;
use core::{fmt, mem::MaybeUninit, ptr, slice, str};
pub(crate) trait GenericRadix: Sized {
const BASE: u8;
const PREFIX: &'static str;
fn digit(x: u8) -> u8;
fn fmt_u256(&self, mut x: U256, is_nonnegative: bool, f: &mut fmt::Formatter) -> fmt::Result {
// The radix can be as low as 2, so we need a buffer of at least 256
// characters for a base 2 number.
let zero = U256::ZERO;
let mut buf = [MaybeUninit::<u8>::uninit(); 256];
let mut curr = buf.len();
let base = U256::from(Self::BASE);
// Accumulate each digit of the number from the least significant
// to the most significant figure.
for byte in buf.iter_mut().rev() {
let n = x % base; // Get the current place value.
x /= base; // Deaccumulate the number.
byte.write(Self::digit(n.as_u8())); // Store the digit in the buffer.
curr -= 1;
if x == zero {
// No more digits left to accumulate.
break;
};
}
let buf = &buf[curr..];
// SAFETY: The only chars in `buf` are created by `Self::digit` which are assumed to be
// valid UTF-8
let buf = unsafe {
str::from_utf8_unchecked(slice::from_raw_parts(
&buf[0] as *const _ as *const u8,
buf.len(),
))
};
f.pad_integral(is_nonnegative, Self::PREFIX, buf)
}
}
/// A binary (base 2) radix
#[derive(Clone, PartialEq)]
pub(crate) struct Binary;
/// An octal (base 8) radix
#[derive(Clone, PartialEq)]
pub(crate) struct Octal;
/// A hexadecimal (base 16) radix, formatted with lower-case characters
#[derive(Clone, PartialEq)]
pub(crate) struct LowerHex;
/// A hexadecimal (base 16) radix, formatted with upper-case characters
#[derive(Clone, PartialEq)]
pub(crate) struct UpperHex;
macro_rules! radix {
($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => {
impl GenericRadix for $T {
const BASE: u8 = $base;
const PREFIX: &'static str = $prefix;
fn digit(x: u8) -> u8 {
match x {
$($x => $conv,)+
x => panic!("number not in the range 0..={}: {}", Self::BASE - 1, x),
}
}
}
}
}
radix! { Binary, 2, "0b", x @ 0 ..= 1 => b'0' + x }
radix! { Octal, 8, "0o", x @ 0 ..= 7 => b'0' + x }
radix! { LowerHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'a' + (x - 10) }
radix! { UpperHex, 16, "0x", x @ 0 ..= 9 => b'0' + x, x @ 10 ..= 15 => b'A' + (x - 10) }
const DEC_DIGITS_LUT: &[u8; 200] = b"\
0001020304050607080910111213141516171819\
2021222324252627282930313233343536373839\
4041424344454647484950515253545556575859\
6061626364656667686970717273747576777879\
8081828384858687888990919293949596979899";
pub(crate) fn fmt_u256(mut n: U256, is_nonnegative: bool, f: &mut fmt::Formatter) -> fmt::Result {
// 2^256 is about 1*10^78, so 79 gives an extra byte of space
let mut buf = [MaybeUninit::<u8>::uninit(); 79];
let mut curr = buf.len() as isize;
let buf_ptr = &mut buf[0] as *mut _ as *mut u8;
let lut_ptr = DEC_DIGITS_LUT.as_ptr();
// SAFETY: Since `d1` and `d2` are always less than or equal to `198`, we
// can copy from `lut_ptr[d1..d1 + 1]` and `lut_ptr[d2..d2 + 1]`. To show
// that it's OK to copy into `buf_ptr`, notice that at the beginning
// `curr == buf.len() == 39 > log(n)` since `n < 2^128 < 10^39`, and at
// each step this is kept the same as `n` is divided. Since `n` is always
// non-negative, this means that `curr > 0` so `buf_ptr[curr..curr + 1]`
// is safe to access.
unsafe {
// eagerly decode 4 characters at a time
while n >= 10000 {
let rem = (n % 10000).as_isize();
n /= 10000;
let d1 = (rem / 100) << 1;
let d2 = (rem % 100) << 1;
curr -= 4;
// We are allowed to copy to `buf_ptr[curr..curr + 3]` here since
// otherwise `curr < 0`. But then `n` was originally at least `10000^10`
// which is `10^40 > 2^128 > n`.
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2);
}
// if we reach here numbers are <= 9999, so at most 4 chars long
let mut n = n.as_isize(); // possibly reduce 64bit math
// decode 2 more chars, if > 2 chars
if n >= 100 {
let d1 = (n % 100) << 1;
n /= 100;
curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
// decode last 1 or 2 chars
if n < 10 {
curr -= 1;
*buf_ptr.offset(curr) = (n as u8) + b'0';
} else {
let d1 = n << 1;
curr -= 2;
ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
}
}
// SAFETY: `curr` > 0 (since we made `buf` large enough), and all the chars are valid
// UTF-8 since `DEC_DIGITS_LUT` is
let buf_slice = unsafe {
str::from_utf8_unchecked(slice::from_raw_parts(
buf_ptr.offset(curr),
buf.len() - curr as usize,
))
};
f.pad_integral(is_nonnegative, "", buf_slice)
}