#![cfg(feature = "std")]
use num_traits::Float;
pub struct Geomspace<F> {
sign: F,
start: F,
step: F,
index: usize,
len: usize,
}
impl<F> Iterator for Geomspace<F>
where
F: Float,
{
type Item = F;
#[inline]
fn next(&mut self) -> Option<F> {
if self.index >= self.len {
None
} else {
let i = self.index;
self.index += 1;
let exponent = self.start + self.step * F::from(i).unwrap();
Some(self.sign * exponent.exp())
}
}
#[inline]
fn size_hint(&self) -> (usize, Option<usize>) {
let n = self.len - self.index;
(n, Some(n))
}
}
impl<F> DoubleEndedIterator for Geomspace<F>
where
F: Float,
{
#[inline]
fn next_back(&mut self) -> Option<F> {
if self.index >= self.len {
None
} else {
self.len -= 1;
let i = self.len;
let exponent = self.start + self.step * F::from(i).unwrap();
Some(self.sign * exponent.exp())
}
}
}
impl<F> ExactSizeIterator for Geomspace<F> where Geomspace<F>: Iterator {}
#[inline]
pub fn geomspace<F>(a: F, b: F, n: usize) -> Option<Geomspace<F>>
where
F: Float,
{
if a == F::zero() || b == F::zero() || a.is_sign_negative() != b.is_sign_negative() {
return None;
}
let log_a = a.abs().ln();
let log_b = b.abs().ln();
let step = if n > 1 {
let num_steps = F::from(n - 1).expect("Converting number of steps to `A` must not fail.");
(log_b - log_a) / num_steps
} else {
F::zero()
};
Some(Geomspace {
sign: a.signum(),
start: log_a,
step,
index: 0,
len: n,
})
}
#[cfg(test)]
mod tests {
use super::geomspace;
#[test]
#[cfg(feature = "approx")]
fn valid() {
use crate::{arr1, Array1};
use approx::assert_abs_diff_eq;
let array: Array1<_> = geomspace(1e0, 1e3, 4).unwrap().collect();
assert_abs_diff_eq!(array, arr1(&[1e0, 1e1, 1e2, 1e3]), epsilon = 1e-12);
let array: Array1<_> = geomspace(1e3, 1e0, 4).unwrap().collect();
assert_abs_diff_eq!(array, arr1(&[1e3, 1e2, 1e1, 1e0]), epsilon = 1e-12);
let array: Array1<_> = geomspace(-1e3, -1e0, 4).unwrap().collect();
assert_abs_diff_eq!(array, arr1(&[-1e3, -1e2, -1e1, -1e0]), epsilon = 1e-12);
let array: Array1<_> = geomspace(-1e0, -1e3, 4).unwrap().collect();
assert_abs_diff_eq!(array, arr1(&[-1e0, -1e1, -1e2, -1e3]), epsilon = 1e-12);
}
#[test]
fn iter_forward() {
let mut iter = geomspace(1.0f64, 1e3, 4).unwrap();
assert!(iter.size_hint() == (4, Some(4)));
assert!((iter.next().unwrap() - 1e0).abs() < 1e-5);
assert!((iter.next().unwrap() - 1e1).abs() < 1e-5);
assert!((iter.next().unwrap() - 1e2).abs() < 1e-5);
assert!((iter.next().unwrap() - 1e3).abs() < 1e-5);
assert!(iter.next().is_none());
assert!(iter.size_hint() == (0, Some(0)));
}
#[test]
fn iter_backward() {
let mut iter = geomspace(1.0f64, 1e3, 4).unwrap();
assert!(iter.size_hint() == (4, Some(4)));
assert!((iter.next_back().unwrap() - 1e3).abs() < 1e-5);
assert!((iter.next_back().unwrap() - 1e2).abs() < 1e-5);
assert!((iter.next_back().unwrap() - 1e1).abs() < 1e-5);
assert!((iter.next_back().unwrap() - 1e0).abs() < 1e-5);
assert!(iter.next_back().is_none());
assert!(iter.size_hint() == (0, Some(0)));
}
#[test]
fn zero_lower() {
assert!(geomspace(0.0, 1.0, 4).is_none());
}
#[test]
fn zero_upper() {
assert!(geomspace(1.0, 0.0, 4).is_none());
}
#[test]
fn zero_included() {
assert!(geomspace(-1.0, 1.0, 4).is_none());
}
}