1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
use crate::math::{Point, Real};
use crate::query::gjk::{self, CSOPoint};
use crate::query::{PointQuery, PointQueryWithLocation};
use crate::shape::{Segment, SegmentPointLocation, Triangle, TrianglePointLocation};
/// A simplex of dimension up to 2 using Voronoï regions for computing point projections.
#[derive(Clone, Debug)]
pub struct VoronoiSimplex {
prev_vertices: [usize; 3],
prev_dim: usize,
prev_proj: [Real; 2],
vertices: [CSOPoint; 3],
proj: [Real; 2],
dim: usize,
}
impl Default for VoronoiSimplex {
fn default() -> Self {
Self::new()
}
}
impl VoronoiSimplex {
/// Crates a new empty simplex.
pub fn new() -> VoronoiSimplex {
VoronoiSimplex {
prev_vertices: [0, 1, 2],
prev_proj: [0.0; 2],
prev_dim: 0,
vertices: [CSOPoint::origin(); 3],
proj: [0.0; 2],
dim: 0,
}
}
/// Swap two vertices of this simplex.
pub fn swap(&mut self, i1: usize, i2: usize) {
self.vertices.swap(i1, i2);
self.prev_vertices.swap(i1, i2);
}
/// Resets this simplex to a single point.
pub fn reset(&mut self, pt: CSOPoint) {
self.prev_dim = 0;
self.dim = 0;
self.vertices[0] = pt;
}
/// Add a point to this simplex.
pub fn add_point(&mut self, pt: CSOPoint) -> bool {
self.prev_dim = self.dim;
self.prev_proj = self.proj;
self.prev_vertices = [0, 1, 2];
for i in 0..self.dim + 1 {
if (self.vertices[i].point - pt.point).norm_squared() < gjk::eps_tol() {
return false;
}
}
self.dim += 1;
self.vertices[self.dim] = pt;
true
}
/// Retrieves the barycentric coordinate associated to the `i`-th by the last call to `project_origin_and_reduce`.
pub fn proj_coord(&self, i: usize) -> Real {
assert!(i <= self.dim, "Index out of bounds.");
self.proj[i]
}
/// The i-th point of this simplex.
pub fn point(&self, i: usize) -> &CSOPoint {
assert!(i <= self.dim, "Index out of bounds.");
&self.vertices[i]
}
/// Retrieves the barycentric coordinate associated to the `i`-th before the last call to `project_origin_and_reduce`.
pub fn prev_proj_coord(&self, i: usize) -> Real {
assert!(i <= self.prev_dim, "Index out of bounds.");
self.prev_proj[i]
}
/// The i-th point of the simplex before the last call to `projet_origin_and_reduce`.
pub fn prev_point(&self, i: usize) -> &CSOPoint {
assert!(i <= self.prev_dim, "Index out of bounds.");
&self.vertices[self.prev_vertices[i]]
}
/// Projets the origin on the boundary of this simplex and reduces `self` the smallest subsimplex containing the origin.
///
/// Retruns the result of the projection or Point::origin() if the origin lies inside of the simplex.
/// The state of the samplex before projection is saved, and can be retrieved using the methods prefixed
/// by `prev_`.
pub fn project_origin_and_reduce(&mut self) -> Point<Real> {
if self.dim == 0 {
self.proj[0] = 1.0;
self.vertices[0].point
} else if self.dim == 1 {
// FIXME: NLL
let (proj, location) = {
let seg = Segment::new(self.vertices[0].point, self.vertices[1].point);
seg.project_local_point_and_get_location(&Point::<Real>::origin(), true)
};
match location {
SegmentPointLocation::OnVertex(0) => {
self.proj[0] = 1.0;
self.dim = 0;
}
SegmentPointLocation::OnVertex(1) => {
self.proj[0] = 1.0;
self.swap(0, 1);
self.dim = 0;
}
SegmentPointLocation::OnEdge(coords) => {
self.proj = coords;
}
_ => unreachable!(),
}
proj.point
} else {
assert!(self.dim == 2);
// FIXME: NLL
let (proj, location) = {
let tri = Triangle::new(
self.vertices[0].point,
self.vertices[1].point,
self.vertices[2].point,
);
tri.project_local_point_and_get_location(&Point::<Real>::origin(), true)
};
match location {
TrianglePointLocation::OnVertex(i) => {
self.swap(0, i as usize);
self.proj[0] = 1.0;
self.dim = 0;
}
TrianglePointLocation::OnEdge(0, coords) => {
self.proj = coords;
self.dim = 1;
}
TrianglePointLocation::OnEdge(1, coords) => {
self.swap(0, 2);
self.proj[0] = coords[1];
self.proj[1] = coords[0];
self.dim = 1;
}
TrianglePointLocation::OnEdge(2, coords) => {
self.swap(1, 2);
self.proj = coords;
self.dim = 1;
}
_ => {}
}
proj.point
}
}
/// Compute the projection of the origin on the boundary of this simplex.
pub fn project_origin(&mut self) -> Point<Real> {
if self.dim == 0 {
self.vertices[0].point
} else if self.dim == 1 {
let seg = Segment::new(self.vertices[0].point, self.vertices[1].point);
seg.project_local_point(&Point::<Real>::origin(), true)
.point
} else {
assert!(self.dim == 2);
let tri = Triangle::new(
self.vertices[0].point,
self.vertices[1].point,
self.vertices[2].point,
);
tri.project_local_point(&Point::<Real>::origin(), true)
.point
}
}
/// Tests if the given point is already a vertex of this simplex.
pub fn contains_point(&self, pt: &Point<Real>) -> bool {
for i in 0..self.dim + 1 {
if self.vertices[i].point == *pt {
return true;
}
}
false
}
/// The dimension of the smallest subspace that can contain this simplex.
pub fn dimension(&self) -> usize {
self.dim
}
/// The dimension of the simplex before the last call to `project_origin_and_reduce`.
pub fn prev_dimension(&self) -> usize {
self.prev_dim
}
/// The maximum squared length of the vertices of this simplex.
pub fn max_sq_len(&self) -> Real {
let mut max_sq_len = 0.0;
for i in 0..self.dim + 1 {
let norm = self.vertices[i].point.coords.norm_squared();
if norm > max_sq_len {
max_sq_len = norm
}
}
max_sq_len
}
/// Apply a function to all the vertices of this simplex.
pub fn modify_pnts(&mut self, f: &dyn Fn(&mut CSOPoint)) {
for i in 0..self.dim + 1 {
f(&mut self.vertices[i])
}
}
}