1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
#[cfg(feature = "bytemuck")]
use bytemuck::{Pod, Zeroable};
use core::{
cmp::Ordering,
fmt::{
Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex,
},
iter::{Product, Sum},
num::{FpCategory, ParseFloatError},
ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign},
str::FromStr,
};
#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};
#[cfg(feature = "zerocopy")]
use zerocopy::{AsBytes, FromBytes};
pub(crate) mod convert;
/// A 16-bit floating point type implementing the [`bfloat16`] format.
///
/// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard
/// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by
/// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of
/// 11 bits, [`bf16`] has a precision of only 8 bits.
///
/// Like [`f16`][crate::f16], [`bf16`] does not offer arithmetic operations as it is intended for
/// compact storage rather than calculations. Operations should be performed with [`f32`] or
/// higher-precision types and converted to/from [`bf16`] as necessary.
///
/// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
#[allow(non_camel_case_types)]
#[derive(Clone, Copy, Default)]
#[repr(transparent)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))]
#[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))]
pub struct bf16(u16);
impl bf16 {
/// Constructs a [`bf16`] value from the raw bits.
#[inline]
pub const fn from_bits(bits: u16) -> bf16 {
bf16(bits)
}
/// Constructs a [`bf16`] value from a 32-bit floating point value.
///
/// If the 32-bit value is too large to fit, ±∞ will result. NaN values are preserved.
/// Subnormal values that are too tiny to be represented will result in ±0. All other values
/// are truncated and rounded to the nearest representable value.
#[inline]
pub fn from_f32(value: f32) -> bf16 {
bf16(convert::f32_to_bf16(value))
}
/// Constructs a [`bf16`] value from a 64-bit floating point value.
///
/// If the 64-bit value is to large to fit, ±∞ will result. NaN values are preserved.
/// 64-bit subnormal values are too tiny to be represented and result in ±0. Exponents that
/// underflow the minimum exponent will result in subnormals or ±0. All other values are
/// truncated and rounded to the nearest representable value.
#[inline]
pub fn from_f64(value: f64) -> bf16 {
bf16(convert::f64_to_bf16(value))
}
/// Converts a [`bf16`] into the underlying bit representation.
#[inline]
pub const fn to_bits(self) -> u16 {
self.0
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// little-endian byte order.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = bf16::from_f32(12.5).to_le_bytes();
/// assert_eq!(bytes, [0x48, 0x41]);
/// ```
#[inline]
pub const fn to_le_bytes(self) -> [u8; 2] {
self.0.to_le_bytes()
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// big-endian (network) byte order.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = bf16::from_f32(12.5).to_be_bytes();
/// assert_eq!(bytes, [0x41, 0x48]);
/// ```
#[inline]
pub const fn to_be_bytes(self) -> [u8; 2] {
self.0.to_be_bytes()
}
/// Returns the memory representation of the underlying bit representation as a byte array in
/// native byte order.
///
/// As the target platform's native endianness is used, portable code should use
/// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate,
/// instead.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let bytes = bf16::from_f32(12.5).to_ne_bytes();
/// assert_eq!(bytes, if cfg!(target_endian = "big") {
/// [0x41, 0x48]
/// } else {
/// [0x48, 0x41]
/// });
/// ```
#[inline]
pub const fn to_ne_bytes(self) -> [u8; 2] {
self.0.to_ne_bytes()
}
/// Creates a floating point value from its representation as a byte array in little endian.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = bf16::from_le_bytes([0x48, 0x41]);
/// assert_eq!(value, bf16::from_f32(12.5));
/// ```
#[inline]
pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 {
bf16::from_bits(u16::from_le_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in big endian.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = bf16::from_be_bytes([0x41, 0x48]);
/// assert_eq!(value, bf16::from_f32(12.5));
/// ```
#[inline]
pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 {
bf16::from_bits(u16::from_be_bytes(bytes))
}
/// Creates a floating point value from its representation as a byte array in native endian.
///
/// As the target platform's native endianness is used, portable code likely wants to use
/// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as
/// appropriate instead.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
/// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") {
/// [0x41, 0x48]
/// } else {
/// [0x48, 0x41]
/// });
/// assert_eq!(value, bf16::from_f32(12.5));
/// ```
#[inline]
pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 {
bf16::from_bits(u16::from_ne_bytes(bytes))
}
/// Converts a [`bf16`] value into an [`f32`] value.
///
/// This conversion is lossless as all values can be represented exactly in [`f32`].
#[inline]
pub fn to_f32(self) -> f32 {
convert::bf16_to_f32(self.0)
}
/// Converts a [`bf16`] value into an [`f64`] value.
///
/// This conversion is lossless as all values can be represented exactly in [`f64`].
#[inline]
pub fn to_f64(self) -> f64 {
convert::bf16_to_f64(self.0)
}
/// Returns `true` if this value is NaN and `false` otherwise.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = bf16::NAN;
/// let f = bf16::from_f32(7.0_f32);
///
/// assert!(nan.is_nan());
/// assert!(!f.is_nan());
/// ```
#[inline]
pub const fn is_nan(self) -> bool {
self.0 & 0x7FFFu16 > 0x7F80u16
}
/// Returns `true` if this value is ±∞ and `false` otherwise.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = bf16::from_f32(7.0f32);
/// let inf = bf16::INFINITY;
/// let neg_inf = bf16::NEG_INFINITY;
/// let nan = bf16::NAN;
///
/// assert!(!f.is_infinite());
/// assert!(!nan.is_infinite());
///
/// assert!(inf.is_infinite());
/// assert!(neg_inf.is_infinite());
/// ```
#[inline]
pub const fn is_infinite(self) -> bool {
self.0 & 0x7FFFu16 == 0x7F80u16
}
/// Returns `true` if this number is neither infinite nor NaN.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = bf16::from_f32(7.0f32);
/// let inf = bf16::INFINITY;
/// let neg_inf = bf16::NEG_INFINITY;
/// let nan = bf16::NAN;
///
/// assert!(f.is_finite());
///
/// assert!(!nan.is_finite());
/// assert!(!inf.is_finite());
/// assert!(!neg_inf.is_finite());
/// ```
#[inline]
pub const fn is_finite(self) -> bool {
self.0 & 0x7F80u16 != 0x7F80u16
}
/// Returns `true` if the number is neither zero, infinite, subnormal, or NaN.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let min = bf16::MIN_POSITIVE;
/// let max = bf16::MAX;
/// let lower_than_min = bf16::from_f32(1.0e-39_f32);
/// let zero = bf16::from_f32(0.0_f32);
///
/// assert!(min.is_normal());
/// assert!(max.is_normal());
///
/// assert!(!zero.is_normal());
/// assert!(!bf16::NAN.is_normal());
/// assert!(!bf16::INFINITY.is_normal());
/// // Values between 0 and `min` are subnormal.
/// assert!(!lower_than_min.is_normal());
/// ```
#[inline]
pub const fn is_normal(self) -> bool {
let exp = self.0 & 0x7F80u16;
exp != 0x7F80u16 && exp != 0
}
/// Returns the floating point category of the number.
///
/// If only one property is going to be tested, it is generally faster to use the specific
/// predicate instead.
///
/// # Examples
///
/// ```rust
/// use std::num::FpCategory;
/// # use half::prelude::*;
///
/// let num = bf16::from_f32(12.4_f32);
/// let inf = bf16::INFINITY;
///
/// assert_eq!(num.classify(), FpCategory::Normal);
/// assert_eq!(inf.classify(), FpCategory::Infinite);
/// ```
pub const fn classify(self) -> FpCategory {
let exp = self.0 & 0x7F80u16;
let man = self.0 & 0x007Fu16;
match (exp, man) {
(0, 0) => FpCategory::Zero,
(0, _) => FpCategory::Subnormal,
(0x7F80u16, 0) => FpCategory::Infinite,
(0x7F80u16, _) => FpCategory::Nan,
_ => FpCategory::Normal,
}
}
/// Returns a number that represents the sign of `self`.
///
/// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY]
/// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY]
/// * [`NAN`][bf16::NAN] if the number is NaN
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let f = bf16::from_f32(3.5_f32);
///
/// assert_eq!(f.signum(), bf16::from_f32(1.0));
/// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0));
///
/// assert!(bf16::NAN.signum().is_nan());
/// ```
pub const fn signum(self) -> bf16 {
if self.is_nan() {
self
} else if self.0 & 0x8000u16 != 0 {
Self::NEG_ONE
} else {
Self::ONE
}
}
/// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a
/// positive sign bit and +∞.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = bf16::NAN;
/// let f = bf16::from_f32(7.0_f32);
/// let g = bf16::from_f32(-7.0_f32);
///
/// assert!(f.is_sign_positive());
/// assert!(!g.is_sign_positive());
/// // NaN can be either positive or negative
/// assert!(nan.is_sign_positive() != nan.is_sign_negative());
/// ```
#[inline]
pub const fn is_sign_positive(self) -> bool {
self.0 & 0x8000u16 == 0
}
/// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a
/// negative sign bit and −∞.
///
/// # Examples
///
/// ```rust
/// # use half::prelude::*;
///
/// let nan = bf16::NAN;
/// let f = bf16::from_f32(7.0f32);
/// let g = bf16::from_f32(-7.0f32);
///
/// assert!(!f.is_sign_negative());
/// assert!(g.is_sign_negative());
/// // NaN can be either positive or negative
/// assert!(nan.is_sign_positive() != nan.is_sign_negative());
/// ```
#[inline]
pub const fn is_sign_negative(self) -> bool {
self.0 & 0x8000u16 != 0
}
/// Returns a number composed of the magnitude of `self` and the sign of `sign`.
///
/// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
/// If `self` is NaN, then NaN with the sign of `sign` is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let f = bf16::from_f32(3.5);
///
/// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
/// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
/// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5));
/// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5));
///
/// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan());
/// ```
#[inline]
pub const fn copysign(self, sign: bf16) -> bf16 {
bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16))
}
/// Returns the maximum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let x = bf16::from_f32(1.0);
/// let y = bf16::from_f32(2.0);
///
/// assert_eq!(x.max(y), y);
/// ```
#[inline]
pub fn max(self, other: bf16) -> bf16 {
if other > self && !other.is_nan() {
other
} else {
self
}
}
/// Returns the minimum of the two numbers.
///
/// If one of the arguments is NaN, then the other argument is returned.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// let x = bf16::from_f32(1.0);
/// let y = bf16::from_f32(2.0);
///
/// assert_eq!(x.min(y), x);
/// ```
#[inline]
pub fn min(self, other: bf16) -> bf16 {
if other < self && !other.is_nan() {
other
} else {
self
}
}
/// Restrict a value to a certain interval unless it is NaN.
///
/// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`.
/// Otherwise this returns `self`.
///
/// Note that this function returns NaN if the initial value was NaN as well.
///
/// # Panics
/// Panics if `min > max`, `min` is NaN, or `max` is NaN.
///
/// # Examples
///
/// ```
/// # use half::prelude::*;
/// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0));
/// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0));
/// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0));
/// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan());
/// ```
#[inline]
pub fn clamp(self, min: bf16, max: bf16) -> bf16 {
assert!(min <= max);
let mut x = self;
if x < min {
x = min;
}
if x > max {
x = max;
}
x
}
/// Approximate number of [`bf16`] significant digits in base 10
pub const DIGITS: u32 = 2;
/// [`bf16`]
/// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value
///
/// This is the difference between 1.0 and the next largest representable number.
pub const EPSILON: bf16 = bf16(0x3C00u16);
/// [`bf16`] positive Infinity (+∞)
pub const INFINITY: bf16 = bf16(0x7F80u16);
/// Number of [`bf16`] significant digits in base 2
pub const MANTISSA_DIGITS: u32 = 8;
/// Largest finite [`bf16`] value
pub const MAX: bf16 = bf16(0x7F7F);
/// Maximum possible [`bf16`] power of 10 exponent
pub const MAX_10_EXP: i32 = 38;
/// Maximum possible [`bf16`] power of 2 exponent
pub const MAX_EXP: i32 = 128;
/// Smallest finite [`bf16`] value
pub const MIN: bf16 = bf16(0xFF7F);
/// Minimum possible normal [`bf16`] power of 10 exponent
pub const MIN_10_EXP: i32 = -37;
/// One greater than the minimum possible normal [`bf16`] power of 2 exponent
pub const MIN_EXP: i32 = -125;
/// Smallest positive normal [`bf16`] value
pub const MIN_POSITIVE: bf16 = bf16(0x0080u16);
/// [`bf16`] Not a Number (NaN)
pub const NAN: bf16 = bf16(0x7FC0u16);
/// [`bf16`] negative infinity (-∞).
pub const NEG_INFINITY: bf16 = bf16(0xFF80u16);
/// The radix or base of the internal representation of [`bf16`]
pub const RADIX: u32 = 2;
/// Minimum positive subnormal [`bf16`] value
pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16);
/// Maximum subnormal [`bf16`] value
pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16);
/// [`bf16`] 1
pub const ONE: bf16 = bf16(0x3F80u16);
/// [`bf16`] 0
pub const ZERO: bf16 = bf16(0x0000u16);
/// [`bf16`] -0
pub const NEG_ZERO: bf16 = bf16(0x8000u16);
/// [`bf16`] -1
pub const NEG_ONE: bf16 = bf16(0xBF80u16);
/// [`bf16`] Euler's number (ℯ)
pub const E: bf16 = bf16(0x402Eu16);
/// [`bf16`] Archimedes' constant (π)
pub const PI: bf16 = bf16(0x4049u16);
/// [`bf16`] 1/π
pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16);
/// [`bf16`] 1/√2
pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16);
/// [`bf16`] 2/π
pub const FRAC_2_PI: bf16 = bf16(0x3F23u16);
/// [`bf16`] 2/√π
pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16);
/// [`bf16`] π/2
pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16);
/// [`bf16`] π/3
pub const FRAC_PI_3: bf16 = bf16(0x3F86u16);
/// [`bf16`] π/4
pub const FRAC_PI_4: bf16 = bf16(0x3F49u16);
/// [`bf16`] π/6
pub const FRAC_PI_6: bf16 = bf16(0x3F06u16);
/// [`bf16`] π/8
pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16);
/// [`bf16`] 𝗅𝗇 10
pub const LN_10: bf16 = bf16(0x4013u16);
/// [`bf16`] 𝗅𝗇 2
pub const LN_2: bf16 = bf16(0x3F31u16);
/// [`bf16`] 𝗅𝗈𝗀₁₀ℯ
pub const LOG10_E: bf16 = bf16(0x3EDEu16);
/// [`bf16`] 𝗅𝗈𝗀₁₀2
pub const LOG10_2: bf16 = bf16(0x3E9Au16);
/// [`bf16`] 𝗅𝗈𝗀₂ℯ
pub const LOG2_E: bf16 = bf16(0x3FB9u16);
/// [`bf16`] 𝗅𝗈𝗀₂10
pub const LOG2_10: bf16 = bf16(0x4055u16);
/// [`bf16`] √2
pub const SQRT_2: bf16 = bf16(0x3FB5u16);
}
impl From<bf16> for f32 {
#[inline]
fn from(x: bf16) -> f32 {
x.to_f32()
}
}
impl From<bf16> for f64 {
#[inline]
fn from(x: bf16) -> f64 {
x.to_f64()
}
}
impl From<i8> for bf16 {
#[inline]
fn from(x: i8) -> bf16 {
// Convert to f32, then to bf16
bf16::from_f32(f32::from(x))
}
}
impl From<u8> for bf16 {
#[inline]
fn from(x: u8) -> bf16 {
// Convert to f32, then to f16
bf16::from_f32(f32::from(x))
}
}
impl PartialEq for bf16 {
fn eq(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
(self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0)
}
}
}
impl PartialOrd for bf16 {
fn partial_cmp(&self, other: &bf16) -> Option<Ordering> {
if self.is_nan() || other.is_nan() {
None
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => Some(self.0.cmp(&other.0)),
(false, true) => {
if (self.0 | other.0) & 0x7FFFu16 == 0 {
Some(Ordering::Equal)
} else {
Some(Ordering::Greater)
}
}
(true, false) => {
if (self.0 | other.0) & 0x7FFFu16 == 0 {
Some(Ordering::Equal)
} else {
Some(Ordering::Less)
}
}
(true, true) => Some(other.0.cmp(&self.0)),
}
}
}
fn lt(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 < other.0,
(false, true) => false,
(true, false) => (self.0 | other.0) & 0x7FFFu16 != 0,
(true, true) => self.0 > other.0,
}
}
}
fn le(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 <= other.0,
(false, true) => (self.0 | other.0) & 0x7FFFu16 == 0,
(true, false) => true,
(true, true) => self.0 >= other.0,
}
}
}
fn gt(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 > other.0,
(false, true) => (self.0 | other.0) & 0x7FFFu16 != 0,
(true, false) => false,
(true, true) => self.0 < other.0,
}
}
}
fn ge(&self, other: &bf16) -> bool {
if self.is_nan() || other.is_nan() {
false
} else {
let neg = self.0 & 0x8000u16 != 0;
let other_neg = other.0 & 0x8000u16 != 0;
match (neg, other_neg) {
(false, false) => self.0 >= other.0,
(false, true) => true,
(true, false) => (self.0 | other.0) & 0x7FFFu16 == 0,
(true, true) => self.0 <= other.0,
}
}
}
}
impl FromStr for bf16 {
type Err = ParseFloatError;
fn from_str(src: &str) -> Result<bf16, ParseFloatError> {
f32::from_str(src).map(bf16::from_f32)
}
}
impl Debug for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:?}", self.to_f32())
}
}
impl Display for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{}", self.to_f32())
}
}
impl LowerExp for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:e}", self.to_f32())
}
}
impl UpperExp for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:E}", self.to_f32())
}
}
impl Binary for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:b}", self.0)
}
}
impl Octal for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:o}", self.0)
}
}
impl LowerHex for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:x}", self.0)
}
}
impl UpperHex for bf16 {
fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> {
write!(f, "{:X}", self.0)
}
}
impl Neg for bf16 {
type Output = Self;
fn neg(self) -> Self::Output {
Self(self.0 ^ 0x8000)
}
}
impl Add for bf16 {
type Output = Self;
fn add(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs))
}
}
impl Add<&bf16> for bf16 {
type Output = <bf16 as Add<bf16>>::Output;
#[inline]
fn add(self, rhs: &bf16) -> Self::Output {
self.add(*rhs)
}
}
impl Add<&bf16> for &bf16 {
type Output = <bf16 as Add<bf16>>::Output;
#[inline]
fn add(self, rhs: &bf16) -> Self::Output {
(*self).add(*rhs)
}
}
impl Add<bf16> for &bf16 {
type Output = <bf16 as Add<bf16>>::Output;
#[inline]
fn add(self, rhs: bf16) -> Self::Output {
(*self).add(rhs)
}
}
impl AddAssign for bf16 {
#[inline]
fn add_assign(&mut self, rhs: Self) {
*self = (*self).add(rhs);
}
}
impl AddAssign<&bf16> for bf16 {
#[inline]
fn add_assign(&mut self, rhs: &bf16) {
*self = (*self).add(rhs);
}
}
impl Sub for bf16 {
type Output = Self;
fn sub(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs))
}
}
impl Sub<&bf16> for bf16 {
type Output = <bf16 as Sub<bf16>>::Output;
#[inline]
fn sub(self, rhs: &bf16) -> Self::Output {
self.sub(*rhs)
}
}
impl Sub<&bf16> for &bf16 {
type Output = <bf16 as Sub<bf16>>::Output;
#[inline]
fn sub(self, rhs: &bf16) -> Self::Output {
(*self).sub(*rhs)
}
}
impl Sub<bf16> for &bf16 {
type Output = <bf16 as Sub<bf16>>::Output;
#[inline]
fn sub(self, rhs: bf16) -> Self::Output {
(*self).sub(rhs)
}
}
impl SubAssign for bf16 {
#[inline]
fn sub_assign(&mut self, rhs: Self) {
*self = (*self).sub(rhs);
}
}
impl SubAssign<&bf16> for bf16 {
#[inline]
fn sub_assign(&mut self, rhs: &bf16) {
*self = (*self).sub(rhs);
}
}
impl Mul for bf16 {
type Output = Self;
fn mul(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs))
}
}
impl Mul<&bf16> for bf16 {
type Output = <bf16 as Mul<bf16>>::Output;
#[inline]
fn mul(self, rhs: &bf16) -> Self::Output {
self.mul(*rhs)
}
}
impl Mul<&bf16> for &bf16 {
type Output = <bf16 as Mul<bf16>>::Output;
#[inline]
fn mul(self, rhs: &bf16) -> Self::Output {
(*self).mul(*rhs)
}
}
impl Mul<bf16> for &bf16 {
type Output = <bf16 as Mul<bf16>>::Output;
#[inline]
fn mul(self, rhs: bf16) -> Self::Output {
(*self).mul(rhs)
}
}
impl MulAssign for bf16 {
#[inline]
fn mul_assign(&mut self, rhs: Self) {
*self = (*self).mul(rhs);
}
}
impl MulAssign<&bf16> for bf16 {
#[inline]
fn mul_assign(&mut self, rhs: &bf16) {
*self = (*self).mul(rhs);
}
}
impl Div for bf16 {
type Output = Self;
fn div(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs))
}
}
impl Div<&bf16> for bf16 {
type Output = <bf16 as Div<bf16>>::Output;
#[inline]
fn div(self, rhs: &bf16) -> Self::Output {
self.div(*rhs)
}
}
impl Div<&bf16> for &bf16 {
type Output = <bf16 as Div<bf16>>::Output;
#[inline]
fn div(self, rhs: &bf16) -> Self::Output {
(*self).div(*rhs)
}
}
impl Div<bf16> for &bf16 {
type Output = <bf16 as Div<bf16>>::Output;
#[inline]
fn div(self, rhs: bf16) -> Self::Output {
(*self).div(rhs)
}
}
impl DivAssign for bf16 {
#[inline]
fn div_assign(&mut self, rhs: Self) {
*self = (*self).div(rhs);
}
}
impl DivAssign<&bf16> for bf16 {
#[inline]
fn div_assign(&mut self, rhs: &bf16) {
*self = (*self).div(rhs);
}
}
impl Rem for bf16 {
type Output = Self;
fn rem(self, rhs: Self) -> Self::Output {
Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs))
}
}
impl Rem<&bf16> for bf16 {
type Output = <bf16 as Rem<bf16>>::Output;
#[inline]
fn rem(self, rhs: &bf16) -> Self::Output {
self.rem(*rhs)
}
}
impl Rem<&bf16> for &bf16 {
type Output = <bf16 as Rem<bf16>>::Output;
#[inline]
fn rem(self, rhs: &bf16) -> Self::Output {
(*self).rem(*rhs)
}
}
impl Rem<bf16> for &bf16 {
type Output = <bf16 as Rem<bf16>>::Output;
#[inline]
fn rem(self, rhs: bf16) -> Self::Output {
(*self).rem(rhs)
}
}
impl RemAssign for bf16 {
#[inline]
fn rem_assign(&mut self, rhs: Self) {
*self = (*self).rem(rhs);
}
}
impl RemAssign<&bf16> for bf16 {
#[inline]
fn rem_assign(&mut self, rhs: &bf16) {
*self = (*self).rem(rhs);
}
}
impl Product for bf16 {
#[inline]
fn product<I: Iterator<Item = Self>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
impl<'a> Product<&'a bf16> for bf16 {
#[inline]
fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
impl Sum for bf16 {
#[inline]
fn sum<I: Iterator<Item = Self>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).sum())
}
}
impl<'a> Sum<&'a bf16> for bf16 {
#[inline]
fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self {
bf16::from_f32(iter.map(|f| f.to_f32()).product())
}
}
#[allow(
clippy::cognitive_complexity,
clippy::float_cmp,
clippy::neg_cmp_op_on_partial_ord
)]
#[cfg(test)]
mod test {
use super::*;
use core::cmp::Ordering;
#[cfg(feature = "num-traits")]
use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive};
use quickcheck_macros::quickcheck;
#[cfg(feature = "num-traits")]
#[test]
fn as_primitive() {
let two = bf16::from_f32(2.0);
assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two);
assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2);
assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two);
assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0);
assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two);
assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0);
}
#[cfg(feature = "num-traits")]
#[test]
fn to_primitive() {
let two = bf16::from_f32(2.0);
assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32);
assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32);
assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64);
}
#[cfg(feature = "num-traits")]
#[test]
fn from_primitive() {
let two = bf16::from_f32(2.0);
assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two);
assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two);
assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two);
}
#[test]
fn test_bf16_consts_from_f32() {
let one = bf16::from_f32(1.0);
let zero = bf16::from_f32(0.0);
let neg_zero = bf16::from_f32(-0.0);
let neg_one = bf16::from_f32(-1.0);
let inf = bf16::from_f32(core::f32::INFINITY);
let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY);
let nan = bf16::from_f32(core::f32::NAN);
assert_eq!(bf16::ONE, one);
assert_eq!(bf16::ZERO, zero);
assert!(zero.is_sign_positive());
assert_eq!(bf16::NEG_ZERO, neg_zero);
assert!(neg_zero.is_sign_negative());
assert_eq!(bf16::NEG_ONE, neg_one);
assert!(neg_one.is_sign_negative());
assert_eq!(bf16::INFINITY, inf);
assert_eq!(bf16::NEG_INFINITY, neg_inf);
assert!(nan.is_nan());
assert!(bf16::NAN.is_nan());
let e = bf16::from_f32(core::f32::consts::E);
let pi = bf16::from_f32(core::f32::consts::PI);
let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI);
let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2);
let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI);
let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI);
let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2);
let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3);
let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4);
let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6);
let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8);
let ln_10 = bf16::from_f32(core::f32::consts::LN_10);
let ln_2 = bf16::from_f32(core::f32::consts::LN_2);
let log10_e = bf16::from_f32(core::f32::consts::LOG10_E);
// core::f32::consts::LOG10_2 requires rustc 1.43.0
let log10_2 = bf16::from_f32(2f32.log10());
let log2_e = bf16::from_f32(core::f32::consts::LOG2_E);
// core::f32::consts::LOG2_10 requires rustc 1.43.0
let log2_10 = bf16::from_f32(10f32.log2());
let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2);
assert_eq!(bf16::E, e);
assert_eq!(bf16::PI, pi);
assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
assert_eq!(bf16::LN_10, ln_10);
assert_eq!(bf16::LN_2, ln_2);
assert_eq!(bf16::LOG10_E, log10_e);
assert_eq!(bf16::LOG10_2, log10_2);
assert_eq!(bf16::LOG2_E, log2_e);
assert_eq!(bf16::LOG2_10, log2_10);
assert_eq!(bf16::SQRT_2, sqrt_2);
}
#[test]
fn test_bf16_consts_from_f64() {
let one = bf16::from_f64(1.0);
let zero = bf16::from_f64(0.0);
let neg_zero = bf16::from_f64(-0.0);
let inf = bf16::from_f64(core::f64::INFINITY);
let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY);
let nan = bf16::from_f64(core::f64::NAN);
assert_eq!(bf16::ONE, one);
assert_eq!(bf16::ZERO, zero);
assert_eq!(bf16::NEG_ZERO, neg_zero);
assert_eq!(bf16::INFINITY, inf);
assert_eq!(bf16::NEG_INFINITY, neg_inf);
assert!(nan.is_nan());
assert!(bf16::NAN.is_nan());
let e = bf16::from_f64(core::f64::consts::E);
let pi = bf16::from_f64(core::f64::consts::PI);
let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI);
let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2);
let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI);
let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI);
let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2);
let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3);
let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4);
let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6);
let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8);
let ln_10 = bf16::from_f64(core::f64::consts::LN_10);
let ln_2 = bf16::from_f64(core::f64::consts::LN_2);
let log10_e = bf16::from_f64(core::f64::consts::LOG10_E);
// core::f64::consts::LOG10_2 requires rustc 1.43.0
let log10_2 = bf16::from_f64(2f64.log10());
let log2_e = bf16::from_f64(core::f64::consts::LOG2_E);
// core::f64::consts::LOG2_10 requires rustc 1.43.0
let log2_10 = bf16::from_f64(10f64.log2());
let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2);
assert_eq!(bf16::E, e);
assert_eq!(bf16::PI, pi);
assert_eq!(bf16::FRAC_1_PI, frac_1_pi);
assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2);
assert_eq!(bf16::FRAC_2_PI, frac_2_pi);
assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi);
assert_eq!(bf16::FRAC_PI_2, frac_pi_2);
assert_eq!(bf16::FRAC_PI_3, frac_pi_3);
assert_eq!(bf16::FRAC_PI_4, frac_pi_4);
assert_eq!(bf16::FRAC_PI_6, frac_pi_6);
assert_eq!(bf16::FRAC_PI_8, frac_pi_8);
assert_eq!(bf16::LN_10, ln_10);
assert_eq!(bf16::LN_2, ln_2);
assert_eq!(bf16::LOG10_E, log10_e);
assert_eq!(bf16::LOG10_2, log10_2);
assert_eq!(bf16::LOG2_E, log2_e);
assert_eq!(bf16::LOG2_10, log2_10);
assert_eq!(bf16::SQRT_2, sqrt_2);
}
#[test]
fn test_nan_conversion_to_smaller() {
let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64);
let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64);
let nan32 = f32::from_bits(0x7F80_0001u32);
let neg_nan32 = f32::from_bits(0xFF80_0001u32);
let nan32_from_64 = nan64 as f32;
let neg_nan32_from_64 = neg_nan64 as f32;
let nan16_from_64 = bf16::from_f64(nan64);
let neg_nan16_from_64 = bf16::from_f64(neg_nan64);
let nan16_from_32 = bf16::from_f32(nan32);
let neg_nan16_from_32 = bf16::from_f32(neg_nan32);
assert!(nan64.is_nan() && nan64.is_sign_positive());
assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative());
assert!(nan32.is_nan() && nan32.is_sign_positive());
assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
assert!(nan32_from_64.is_nan() && nan32_from_64.is_sign_positive());
assert!(neg_nan32_from_64.is_nan() && neg_nan32_from_64.is_sign_negative());
assert!(nan16_from_64.is_nan() && nan16_from_64.is_sign_positive());
assert!(neg_nan16_from_64.is_nan() && neg_nan16_from_64.is_sign_negative());
assert!(nan16_from_32.is_nan() && nan16_from_32.is_sign_positive());
assert!(neg_nan16_from_32.is_nan() && neg_nan16_from_32.is_sign_negative());
}
#[test]
fn test_nan_conversion_to_larger() {
let nan16 = bf16::from_bits(0x7F81u16);
let neg_nan16 = bf16::from_bits(0xFF81u16);
let nan32 = f32::from_bits(0x7F80_0001u32);
let neg_nan32 = f32::from_bits(0xFF80_0001u32);
let nan32_from_16 = f32::from(nan16);
let neg_nan32_from_16 = f32::from(neg_nan16);
let nan64_from_16 = f64::from(nan16);
let neg_nan64_from_16 = f64::from(neg_nan16);
let nan64_from_32 = f64::from(nan32);
let neg_nan64_from_32 = f64::from(neg_nan32);
assert!(nan16.is_nan() && nan16.is_sign_positive());
assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative());
assert!(nan32.is_nan() && nan32.is_sign_positive());
assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative());
assert!(nan32_from_16.is_nan() && nan32_from_16.is_sign_positive());
assert!(neg_nan32_from_16.is_nan() && neg_nan32_from_16.is_sign_negative());
assert!(nan64_from_16.is_nan() && nan64_from_16.is_sign_positive());
assert!(neg_nan64_from_16.is_nan() && neg_nan64_from_16.is_sign_negative());
assert!(nan64_from_32.is_nan() && nan64_from_32.is_sign_positive());
assert!(neg_nan64_from_32.is_nan() && neg_nan64_from_32.is_sign_negative());
}
#[test]
fn test_bf16_to_f32() {
let f = bf16::from_f32(7.0);
assert_eq!(f.to_f32(), 7.0f32);
// 7.1 is NOT exactly representable in 16-bit, it's rounded
let f = bf16::from_f32(7.1);
let diff = (f.to_f32() - 7.1f32).abs();
// diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
assert!(diff <= 4.0 * bf16::EPSILON.to_f32());
let tiny32 = f32::from_bits(0x0001_0000u32);
assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32);
assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32);
assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32));
assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32));
}
#[test]
fn test_bf16_to_f64() {
let f = bf16::from_f64(7.0);
assert_eq!(f.to_f64(), 7.0f64);
// 7.1 is NOT exactly representable in 16-bit, it's rounded
let f = bf16::from_f64(7.1);
let diff = (f.to_f64() - 7.1f64).abs();
// diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1
assert!(diff <= 4.0 * bf16::EPSILON.to_f64());
let tiny64 = 2.0f64.powi(-133);
assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64);
assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64);
assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64));
assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64));
}
#[test]
fn test_comparisons() {
let zero = bf16::from_f64(0.0);
let one = bf16::from_f64(1.0);
let neg_zero = bf16::from_f64(-0.0);
let neg_one = bf16::from_f64(-1.0);
assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal));
assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal));
assert!(zero == neg_zero);
assert!(neg_zero == zero);
assert!(!(zero != neg_zero));
assert!(!(neg_zero != zero));
assert!(!(zero < neg_zero));
assert!(!(neg_zero < zero));
assert!(zero <= neg_zero);
assert!(neg_zero <= zero);
assert!(!(zero > neg_zero));
assert!(!(neg_zero > zero));
assert!(zero >= neg_zero);
assert!(neg_zero >= zero);
assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater));
assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less));
assert!(!(one == neg_zero));
assert!(!(neg_zero == one));
assert!(one != neg_zero);
assert!(neg_zero != one);
assert!(!(one < neg_zero));
assert!(neg_zero < one);
assert!(!(one <= neg_zero));
assert!(neg_zero <= one);
assert!(one > neg_zero);
assert!(!(neg_zero > one));
assert!(one >= neg_zero);
assert!(!(neg_zero >= one));
assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater));
assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less));
assert!(!(one == neg_one));
assert!(!(neg_one == one));
assert!(one != neg_one);
assert!(neg_one != one);
assert!(!(one < neg_one));
assert!(neg_one < one);
assert!(!(one <= neg_one));
assert!(neg_one <= one);
assert!(one > neg_one);
assert!(!(neg_one > one));
assert!(one >= neg_one);
assert!(!(neg_one >= one));
}
#[test]
#[allow(clippy::erasing_op, clippy::identity_op)]
fn round_to_even_f32() {
// smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
let min_sub = bf16::from_bits(1);
let min_sub_f = (-133f32).exp2();
assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits());
assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits());
// 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
// 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
// 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
assert_eq!(
bf16::from_f32(min_sub_f * 0.49).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f32(min_sub_f * 0.50).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f32(min_sub_f * 0.51).to_bits(),
min_sub.to_bits() * 1
);
// 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
// 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
// 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
assert_eq!(
bf16::from_f32(min_sub_f * 1.49).to_bits(),
min_sub.to_bits() * 1
);
assert_eq!(
bf16::from_f32(min_sub_f * 1.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f32(min_sub_f * 1.51).to_bits(),
min_sub.to_bits() * 2
);
// 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
// 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
// 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
assert_eq!(
bf16::from_f32(min_sub_f * 2.49).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f32(min_sub_f * 2.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f32(min_sub_f * 2.51).to_bits(),
min_sub.to_bits() * 3
);
assert_eq!(
bf16::from_f32(250.49f32).to_bits(),
bf16::from_f32(250.0).to_bits()
);
assert_eq!(
bf16::from_f32(250.50f32).to_bits(),
bf16::from_f32(250.0).to_bits()
);
assert_eq!(
bf16::from_f32(250.51f32).to_bits(),
bf16::from_f32(251.0).to_bits()
);
assert_eq!(
bf16::from_f32(251.49f32).to_bits(),
bf16::from_f32(251.0).to_bits()
);
assert_eq!(
bf16::from_f32(251.50f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(251.51f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(252.49f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(252.50f32).to_bits(),
bf16::from_f32(252.0).to_bits()
);
assert_eq!(
bf16::from_f32(252.51f32).to_bits(),
bf16::from_f32(253.0).to_bits()
);
}
#[test]
#[allow(clippy::erasing_op, clippy::identity_op)]
fn round_to_even_f64() {
// smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133
let min_sub = bf16::from_bits(1);
let min_sub_f = (-133f64).exp2();
assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits());
assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits());
// 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding)
// 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even)
// 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up)
assert_eq!(
bf16::from_f64(min_sub_f * 0.49).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f64(min_sub_f * 0.50).to_bits(),
min_sub.to_bits() * 0
);
assert_eq!(
bf16::from_f64(min_sub_f * 0.51).to_bits(),
min_sub.to_bits() * 1
);
// 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding)
// 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even)
// 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up)
assert_eq!(
bf16::from_f64(min_sub_f * 1.49).to_bits(),
min_sub.to_bits() * 1
);
assert_eq!(
bf16::from_f64(min_sub_f * 1.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f64(min_sub_f * 1.51).to_bits(),
min_sub.to_bits() * 2
);
// 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding)
// 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even)
// 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up)
assert_eq!(
bf16::from_f64(min_sub_f * 2.49).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f64(min_sub_f * 2.50).to_bits(),
min_sub.to_bits() * 2
);
assert_eq!(
bf16::from_f64(min_sub_f * 2.51).to_bits(),
min_sub.to_bits() * 3
);
assert_eq!(
bf16::from_f64(250.49f64).to_bits(),
bf16::from_f64(250.0).to_bits()
);
assert_eq!(
bf16::from_f64(250.50f64).to_bits(),
bf16::from_f64(250.0).to_bits()
);
assert_eq!(
bf16::from_f64(250.51f64).to_bits(),
bf16::from_f64(251.0).to_bits()
);
assert_eq!(
bf16::from_f64(251.49f64).to_bits(),
bf16::from_f64(251.0).to_bits()
);
assert_eq!(
bf16::from_f64(251.50f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(251.51f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(252.49f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(252.50f64).to_bits(),
bf16::from_f64(252.0).to_bits()
);
assert_eq!(
bf16::from_f64(252.51f64).to_bits(),
bf16::from_f64(253.0).to_bits()
);
}
impl quickcheck::Arbitrary for bf16 {
fn arbitrary(g: &mut quickcheck::Gen) -> Self {
bf16(u16::arbitrary(g))
}
}
#[quickcheck]
fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool {
let roundtrip = bf16::from_f32(f.to_f32());
if f.is_nan() {
roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
} else {
f.0 == roundtrip.0
}
}
#[quickcheck]
fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool {
let roundtrip = bf16::from_f64(f.to_f64());
if f.is_nan() {
roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative()
} else {
f.0 == roundtrip.0
}
}
}