1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
use crate::bounding_volume::Aabb;
use crate::math::{Isometry, Point, Real, UnitVector, Vector};
use crate::query::visitors::BoundingVolumeIntersectionsVisitor;
use crate::query::{IntersectResult, PointQuery, SplitResult};
use crate::shape::{Cuboid, FeatureId, Polyline, Segment, Shape, TriMesh, TriMeshFlags, Triangle};
use crate::transformation;
use crate::utils::{hashmap::HashMap, SortedPair, WBasis};
use spade::{handles::FixedVertexHandle, ConstrainedDelaunayTriangulation, Triangulation as _};
use std::cmp::Ordering;
struct Triangulation {
delaunay: ConstrainedDelaunayTriangulation<spade::Point2<Real>>,
basis: [Vector<Real>; 2],
basis_origin: Point<Real>,
spade2index: HashMap<FixedVertexHandle, u32>,
index2spade: HashMap<u32, FixedVertexHandle>,
}
impl Triangulation {
fn new(axis: UnitVector<Real>, basis_origin: Point<Real>) -> Self {
Triangulation {
delaunay: ConstrainedDelaunayTriangulation::new(),
basis: axis.orthonormal_basis(),
basis_origin,
spade2index: HashMap::default(),
index2spade: HashMap::default(),
}
}
fn project(&self, pt: Point<Real>) -> spade::Point2<Real> {
let dpt = pt - self.basis_origin;
spade::Point2::new(dpt.dot(&self.basis[0]), dpt.dot(&self.basis[1]))
}
fn add_edge(&mut self, id1: u32, id2: u32, points: &[Point<Real>]) {
let proj1 = self.project(points[id1 as usize]);
let proj2 = self.project(points[id2 as usize]);
let handle1 = *self.index2spade.entry(id1).or_insert_with(|| {
let h = self.delaunay.insert(proj1).unwrap();
let _ = self.spade2index.insert(h, id1);
h
});
let handle2 = *self.index2spade.entry(id2).or_insert_with(|| {
let h = self.delaunay.insert(proj2).unwrap();
let _ = self.spade2index.insert(h, id2);
h
});
// NOTE: the naming of the `ConstrainedDelaunayTriangulation::can_add_constraint` method is misleading.
if !self.delaunay.can_add_constraint(handle1, handle2) {
let _ = self.delaunay.add_constraint(handle1, handle2);
}
}
}
impl TriMesh {
/// Splits this `TriMesh` along the given canonical axis.
///
/// This will split the Aabb by a plane with a normal with it’s `axis`-th component set to 1.
/// The splitting plane is shifted wrt. the origin by the `bias` (i.e. it passes through the point
/// equal to `normal * bias`).
///
/// # Result
/// Returns the result of the split. The first mesh returned is the piece lying on the negative
/// half-space delimited by the splitting plane. The second mesh returned is the piece lying on the
/// positive half-space delimited by the splitting plane.
pub fn canonical_split(&self, axis: usize, bias: Real, epsilon: Real) -> SplitResult<Self> {
// TODO: optimize this.
self.local_split(&Vector::ith_axis(axis), bias, epsilon)
}
/// Splits this mesh, transformed by `position` by a plane identified by its normal `local_axis`
/// and the `bias` (i.e. the plane passes through the point equal to `normal * bias`).
pub fn split(
&self,
position: &Isometry<Real>,
axis: &UnitVector<Real>,
bias: Real,
epsilon: Real,
) -> SplitResult<Self> {
let local_axis = position.inverse_transform_unit_vector(axis);
let added_bias = -position.translation.vector.dot(axis);
self.local_split(&local_axis, bias + added_bias, epsilon)
}
/// Splits this mesh by a plane identified by its normal `local_axis`
/// and the `bias` (i.e. the plane passes through the point equal to `normal * bias`).
pub fn local_split(
&self,
local_axis: &UnitVector<Real>,
bias: Real,
epsilon: Real,
) -> SplitResult<Self> {
let mut triangulation = if self.pseudo_normals().is_some() {
Some(Triangulation::new(*local_axis, self.vertices()[0]))
} else {
None
};
// 1. Partition the vertices.
let vertices = self.vertices();
let indices = self.indices();
let mut colors = vec![0u8; self.vertices().len()];
// Color 0 = on plane.
// 1 = on negative half-space.
// 2 = on positive half-space.
let mut found_negative = false;
let mut found_positive = false;
for (i, pt) in vertices.iter().enumerate() {
let dist_to_plane = pt.coords.dot(local_axis) - bias;
if dist_to_plane < -epsilon {
found_negative = true;
colors[i] = 1;
} else if dist_to_plane > epsilon {
found_positive = true;
colors[i] = 2;
}
}
// Exit early if `self` isn’t crossed by the plane.
if !found_negative {
return SplitResult::Positive;
}
if !found_positive {
return SplitResult::Negative;
}
// 2. Split the triangles.
let mut intersections_found = HashMap::default();
let mut new_indices = indices.to_vec();
let mut new_vertices = vertices.to_vec();
for (tri_id, idx) in indices.iter().enumerate() {
let mut intersection_features = (FeatureId::Unknown, FeatureId::Unknown);
// First, find where the plane intersects the triangle.
for ia in 0..3 {
let ib = (ia + 1) % 3;
let idx_a = idx[ia as usize];
let idx_b = idx[ib as usize];
let fid = match (colors[idx_a as usize], colors[idx_b as usize]) {
(1, 2) | (2, 1) => FeatureId::Edge(ia),
// NOTE: the case (_, 0) will be dealt with in the next loop iteration.
(0, _) => FeatureId::Vertex(ia),
_ => continue,
};
if intersection_features.0 == FeatureId::Unknown {
intersection_features.0 = fid;
} else {
// FIXME: this assertion may fire if the triangle is coplanar with the edge?
// assert_eq!(intersection_features.1, FeatureId::Unknown);
intersection_features.1 = fid;
}
}
// Helper that intersects an edge with the plane.
let mut intersect_edge = |idx_a, idx_b| {
*intersections_found
.entry(SortedPair::new(idx_a, idx_b))
.or_insert_with(|| {
let segment = Segment::new(
new_vertices[idx_a as usize],
new_vertices[idx_b as usize],
);
// Intersect the segment with the plane.
if let Some((intersection, _)) = segment
.local_split_and_get_intersection(local_axis, bias, epsilon)
.1
{
new_vertices.push(intersection);
colors.push(0);
(new_vertices.len() - 1) as u32
} else {
unreachable!()
}
})
};
// Perform the intersection, push new triangles, and update
// triangulation constraints if needed.
match intersection_features {
(_, FeatureId::Unknown) => {
// The plane doesn’t intersect the triangle, or intersects it at
// a single vertex, so we don’t have anything to do.
assert!(
matches!(intersection_features.0, FeatureId::Unknown)
|| matches!(intersection_features.0, FeatureId::Vertex(_))
);
}
(FeatureId::Vertex(v1), FeatureId::Vertex(v2)) => {
// The plane intersects the triangle along one of its edge.
// We don’t have to split the triangle, but we need to add
// a constraint to the triangulation.
if let Some(triangulation) = &mut triangulation {
let id1 = idx[v1 as usize];
let id2 = idx[v2 as usize];
triangulation.add_edge(id1, id2, &new_vertices);
}
}
(FeatureId::Vertex(iv), FeatureId::Edge(ie))
| (FeatureId::Edge(ie), FeatureId::Vertex(iv)) => {
// The plane splits the triangle into exactly two triangles.
let ia = ie;
let ib = (ie + 1) % 3;
let ic = (ie + 2) % 3;
let idx_a = idx[ia as usize];
let idx_b = idx[ib as usize];
let idx_c = idx[ic as usize];
assert_eq!(iv, ic);
let intersection_idx = intersect_edge(idx_a, idx_b);
// Compute the indices of the two triangles.
let new_tri_a = [idx_c, idx_a, intersection_idx];
let new_tri_b = [idx_b, idx_c, intersection_idx];
new_indices[tri_id] = new_tri_a;
new_indices.push(new_tri_b);
if let Some(triangulation) = &mut triangulation {
triangulation.add_edge(intersection_idx, idx_c, &new_vertices);
}
}
(FeatureId::Edge(mut e1), FeatureId::Edge(mut e2)) => {
// The plane splits the triangle into 1 + 2 triangles.
// First, make sure the edge indices are consecutive.
if e2 != (e1 + 1) % 3 {
std::mem::swap(&mut e1, &mut e2);
}
let ia = e2; // The first point of the second edge is the vertex shared by both edges.
let ib = (e2 + 1) % 3;
let ic = (e2 + 2) % 3;
let idx_a = idx[ia as usize];
let idx_b = idx[ib as usize];
let idx_c = idx[ic as usize];
let intersection1 = intersect_edge(idx_c, idx_a);
let intersection2 = intersect_edge(idx_a, idx_b);
let new_tri1 = [idx_a, intersection2, intersection1];
let new_tri2 = [intersection2, idx_b, idx_c];
let new_tri3 = [intersection2, idx_c, intersection1];
new_indices[tri_id] = new_tri1;
new_indices.push(new_tri2);
new_indices.push(new_tri3);
if let Some(triangulation) = &mut triangulation {
triangulation.add_edge(intersection1, intersection2, &new_vertices);
}
}
_ => unreachable!(),
}
}
// 3. Partition the new triangles into two trimeshes.
let mut vertices_lhs = vec![];
let mut vertices_rhs = vec![];
let mut indices_lhs = vec![];
let mut indices_rhs = vec![];
let mut remap = vec![];
for i in 0..new_vertices.len() {
match colors[i] {
0 => {
remap.push((vertices_lhs.len() as u32, vertices_rhs.len() as u32));
vertices_lhs.push(new_vertices[i]);
vertices_rhs.push(new_vertices[i]);
}
1 => {
remap.push((vertices_lhs.len() as u32, u32::MAX));
vertices_lhs.push(new_vertices[i]);
}
2 => {
remap.push((u32::MAX, vertices_rhs.len() as u32));
vertices_rhs.push(new_vertices[i]);
}
_ => unreachable!(),
}
}
for idx in new_indices {
let idx = [idx[0] as usize, idx[1] as usize, idx[2] as usize]; // Convert to usize.
let colors = [colors[idx[0]], colors[idx[1]], colors[idx[2]]];
let remap = [remap[idx[0]], remap[idx[1]], remap[idx[2]]];
if colors[0] == 1 || colors[1] == 1 || colors[2] == 1 {
assert!(colors[0] != 2 && colors[1] != 2 && colors[2] != 2);
indices_lhs.push([remap[0].0, remap[1].0, remap[2].0]);
} else if colors[0] == 2 || colors[1] == 2 || colors[2] == 2 {
assert!(colors[0] != 1 && colors[1] != 1 && colors[2] != 1);
indices_rhs.push([remap[0].1, remap[1].1, remap[2].1]);
} else {
// The colors are all 0, so push into both trimeshes.
indices_lhs.push([remap[0].0, remap[1].0, remap[2].0]);
indices_rhs.push([remap[0].1, remap[1].1, remap[2].1]);
}
}
// Push the triangulation if there is one.
if let Some(triangulation) = triangulation {
for face in triangulation.delaunay.inner_faces() {
let vtx = face.vertices();
let mut idx1 = [0; 3];
let mut idx2 = [0; 3];
for k in 0..3 {
let vid = triangulation.spade2index[&vtx[k].fix()];
assert_eq!(colors[vid as usize], 0);
idx1[k] = remap[vid as usize].0;
idx2[k] = remap[vid as usize].1;
}
let tri = Triangle::new(
vertices_lhs[idx1[0] as usize],
vertices_lhs[idx1[1] as usize],
vertices_lhs[idx1[2] as usize],
);
if self.contains_local_point(&tri.center()) {
indices_lhs.push(idx1);
idx2.swap(1, 2); // Flip orientation for the second half of the split.
indices_rhs.push(idx2);
}
}
}
// TODO: none of the index buffers should be empty at this point unless perhaps
// because of some rounding errors?
// Should we just panic if they are empty?
if indices_rhs.is_empty() {
SplitResult::Negative
} else if indices_lhs.is_empty() {
SplitResult::Positive
} else {
let mesh_lhs = TriMesh::new(vertices_lhs, indices_lhs);
let mesh_rhs = TriMesh::new(vertices_rhs, indices_rhs);
SplitResult::Pair(mesh_lhs, mesh_rhs)
}
}
/// Computes the intersection [`Polyline`]s between this mesh and the plane identified by
/// the given canonical axis.
///
/// This will intersect the mesh by a plane with a normal with it’s `axis`-th component set to 1.
/// The splitting plane is shifted wrt. the origin by the `bias` (i.e. it passes through the point
/// equal to `normal * bias`).
///
/// Note that the resultant polyline may have multiple connected components
pub fn canonical_intersection_with_plane(
&self,
axis: usize,
bias: Real,
epsilon: Real,
) -> IntersectResult<Polyline> {
self.intersection_with_local_plane(&Vector::ith_axis(axis), bias, epsilon)
}
/// Computes the intersection [`Polyline`]s between this mesh, transformed by `position`,
/// and a plane identified by its normal `axis` and the `bias`
/// (i.e. the plane passes through the point equal to `normal * bias`).
pub fn intersection_with_plane(
&self,
position: &Isometry<Real>,
axis: &UnitVector<Real>,
bias: Real,
epsilon: Real,
) -> IntersectResult<Polyline> {
let local_axis = position.inverse_transform_unit_vector(axis);
let added_bias = -position.translation.vector.dot(axis);
self.intersection_with_local_plane(&local_axis, bias + added_bias, epsilon)
}
/// Computes the intersection [`Polyline`]s between this mesh
/// and a plane identified by its normal `local_axis`
/// and the `bias` (i.e. the plane passes through the point equal to `normal * bias`).
pub fn intersection_with_local_plane(
&self,
local_axis: &UnitVector<Real>,
bias: Real,
epsilon: Real,
) -> IntersectResult<Polyline> {
// 1. Partition the vertices.
let vertices = self.vertices();
let indices = self.indices();
let mut colors = vec![0u8; self.vertices().len()];
// Color 0 = on plane.
// 1 = on negative half-space.
// 2 = on positive half-space.
let mut found_negative = false;
let mut found_positive = false;
for (i, pt) in vertices.iter().enumerate() {
let dist_to_plane = pt.coords.dot(local_axis) - bias;
if dist_to_plane < -epsilon {
found_negative = true;
colors[i] = 1;
} else if dist_to_plane > epsilon {
found_positive = true;
colors[i] = 2;
}
}
// Exit early if `self` isn’t crossed by the plane.
if !found_negative {
return IntersectResult::Positive;
}
if !found_positive {
return IntersectResult::Negative;
}
// 2. Split the triangles.
let mut index_adjacencies: Vec<Vec<usize>> = Vec::new(); // Adjacency list of indices
// Helper functions for adding polyline segments to the adjacency list
let mut add_segment_adjacencies = |idx_a: usize, idx_b| {
assert!(idx_a <= index_adjacencies.len());
match idx_a.cmp(&index_adjacencies.len()) {
Ordering::Less => index_adjacencies[idx_a].push(idx_b),
Ordering::Equal => index_adjacencies.push(vec![idx_b]),
Ordering::Greater => {}
}
};
let mut add_segment_adjacencies_symmetric = |idx_a: usize, idx_b| {
if idx_a < idx_b {
add_segment_adjacencies(idx_a, idx_b);
add_segment_adjacencies(idx_b, idx_a);
} else {
add_segment_adjacencies(idx_b, idx_a);
add_segment_adjacencies(idx_a, idx_b);
}
};
let mut intersections_found = HashMap::default();
let mut existing_vertices_found = HashMap::default();
let mut new_vertices = Vec::new();
for idx in indices.iter() {
let mut intersection_features = (FeatureId::Unknown, FeatureId::Unknown);
// First, find where the plane intersects the triangle.
for ia in 0..3 {
let ib = (ia + 1) % 3;
let idx_a = idx[ia as usize];
let idx_b = idx[ib as usize];
let fid = match (colors[idx_a as usize], colors[idx_b as usize]) {
(1, 2) | (2, 1) => FeatureId::Edge(ia),
// NOTE: the case (_, 0) will be dealt with in the next loop iteration.
(0, _) => FeatureId::Vertex(ia),
_ => continue,
};
if intersection_features.0 == FeatureId::Unknown {
intersection_features.0 = fid;
} else {
// FIXME: this assertion may fire if the triangle is coplanar with the edge?
// assert_eq!(intersection_features.1, FeatureId::Unknown);
intersection_features.1 = fid;
}
}
// Helper that intersects an edge with the plane.
let mut intersect_edge = |idx_a, idx_b| {
*intersections_found
.entry(SortedPair::new(idx_a, idx_b))
.or_insert_with(|| {
let segment =
Segment::new(vertices[idx_a as usize], vertices[idx_b as usize]);
// Intersect the segment with the plane.
if let Some((intersection, _)) = segment
.local_split_and_get_intersection(local_axis, bias, epsilon)
.1
{
new_vertices.push(intersection);
colors.push(0);
new_vertices.len() - 1
} else {
unreachable!()
}
})
};
// Perform the intersection, push new triangles, and update
// triangulation constraints if needed.
match intersection_features {
(_, FeatureId::Unknown) => {
// The plane doesn’t intersect the triangle, or intersects it at
// a single vertex, so we don’t have anything to do.
assert!(
matches!(intersection_features.0, FeatureId::Unknown)
|| matches!(intersection_features.0, FeatureId::Vertex(_))
);
}
(FeatureId::Vertex(iv1), FeatureId::Vertex(iv2)) => {
// The plane intersects the triangle along one of its edge.
// We don’t have to split the triangle, but we need to add
// the edge to the polyline indices
let id1 = idx[iv1 as usize];
let id2 = idx[iv2 as usize];
let out_id1 = *existing_vertices_found.entry(id1).or_insert_with(|| {
let v1 = vertices[id1 as usize];
new_vertices.push(v1);
new_vertices.len() - 1
});
let out_id2 = *existing_vertices_found.entry(id2).or_insert_with(|| {
let v2 = vertices[id2 as usize];
new_vertices.push(v2);
new_vertices.len() - 1
});
add_segment_adjacencies_symmetric(out_id1, out_id2);
}
(FeatureId::Vertex(iv), FeatureId::Edge(ie))
| (FeatureId::Edge(ie), FeatureId::Vertex(iv)) => {
// The plane splits the triangle into exactly two triangles.
let ia = ie;
let ib = (ie + 1) % 3;
let ic = (ie + 2) % 3;
let idx_a = idx[ia as usize];
let idx_b = idx[ib as usize];
let idx_c = idx[ic as usize];
assert_eq!(iv, ic);
let intersection_idx = intersect_edge(idx_a, idx_b);
let out_idx_c = *existing_vertices_found.entry(idx_c).or_insert_with(|| {
let v2 = vertices[idx_c as usize];
new_vertices.push(v2);
new_vertices.len() - 1
});
add_segment_adjacencies_symmetric(out_idx_c, intersection_idx);
}
(FeatureId::Edge(mut e1), FeatureId::Edge(mut e2)) => {
// The plane splits the triangle into 1 + 2 triangles.
// First, make sure the edge indices are consecutive.
if e2 != (e1 + 1) % 3 {
std::mem::swap(&mut e1, &mut e2);
}
let ia = e2; // The first point of the second edge is the vertex shared by both edges.
let ib = (e2 + 1) % 3;
let ic = (e2 + 2) % 3;
let idx_a = idx[ia as usize];
let idx_b = idx[ib as usize];
let idx_c = idx[ic as usize];
let intersection1 = intersect_edge(idx_c, idx_a);
let intersection2 = intersect_edge(idx_a, idx_b);
add_segment_adjacencies_symmetric(intersection1, intersection2);
}
_ => unreachable!(),
}
}
// 3. Ensure consistent edge orientation by traversing the adjacency list
let mut polyline_indices: Vec<[u32; 2]> = Vec::with_capacity(index_adjacencies.len() + 1);
let mut seen = vec![false; index_adjacencies.len()];
for (idx, neighbors) in index_adjacencies.iter().enumerate() {
if !seen[idx] {
// Start a new component
// Traverse the adjencies until the loop closes
let first = idx;
let mut prev = first;
let mut next = neighbors.first(); // Arbitrary neighbor
'traversal: while let Some(current) = next {
seen[*current] = true;
polyline_indices.push([prev as u32, *current as u32]);
for neighbor in index_adjacencies[*current].iter() {
if *neighbor != prev && *neighbor != first {
prev = *current;
next = Some(neighbor);
continue 'traversal;
} else if *neighbor != prev && *neighbor == first {
// If the next index is same as the first, close the polyline and exit
polyline_indices.push([*current as u32, first as u32]);
next = None;
continue 'traversal;
}
}
}
}
}
IntersectResult::Intersect(Polyline::new(new_vertices, Some(polyline_indices)))
}
/// Computes the intersection mesh between an Aabb and this mesh.
pub fn intersection_with_aabb(
&self,
position: &Isometry<Real>,
flip_mesh: bool,
aabb: &Aabb,
flip_cuboid: bool,
epsilon: Real,
) -> Option<Self> {
let cuboid = Cuboid::new(aabb.half_extents());
let cuboid_pos = Isometry::from(aabb.center());
self.intersection_with_cuboid(
position,
flip_mesh,
&cuboid,
&cuboid_pos,
flip_cuboid,
epsilon,
)
}
/// Computes the intersection mesh between a cuboid and this mesh transformed by `position`.
pub fn intersection_with_cuboid(
&self,
position: &Isometry<Real>,
flip_mesh: bool,
cuboid: &Cuboid,
cuboid_position: &Isometry<Real>,
flip_cuboid: bool,
epsilon: Real,
) -> Option<Self> {
self.intersection_with_local_cuboid(
flip_mesh,
cuboid,
&position.inv_mul(cuboid_position),
flip_cuboid,
epsilon,
)
}
/// Computes the intersection mesh between a cuboid and this mesh.
pub fn intersection_with_local_cuboid(
&self,
flip_mesh: bool,
cuboid: &Cuboid,
cuboid_position: &Isometry<Real>,
flip_cuboid: bool,
_epsilon: Real,
) -> Option<Self> {
if self.topology().is_some() && self.pseudo_normals().is_some() {
let (cuboid_vtx, cuboid_idx) = cuboid.to_trimesh();
let cuboid_trimesh = TriMesh::with_flags(
cuboid_vtx,
cuboid_idx,
TriMeshFlags::HALF_EDGE_TOPOLOGY | TriMeshFlags::ORIENTED,
);
return transformation::intersect_meshes(
&Isometry::identity(),
self,
flip_mesh,
cuboid_position,
&cuboid_trimesh,
flip_cuboid,
)
.ok()
.flatten();
}
let cuboid_aabb = cuboid.compute_aabb(cuboid_position);
let mut intersecting_tris = vec![];
let mut visitor = BoundingVolumeIntersectionsVisitor::new(&cuboid_aabb, |id| {
intersecting_tris.push(*id);
true
});
let _ = self.qbvh().traverse_depth_first(&mut visitor);
if intersecting_tris.is_empty() {
return None;
}
// First, very naive version that outputs a triangle soup without
// index buffer (shared vertices are duplicated).
let vertices = self.vertices();
let indices = self.indices();
let mut clip_workspace = vec![];
let mut new_vertices = vec![];
let mut new_indices = vec![];
let aabb = cuboid.local_aabb();
let inv_pos = cuboid_position.inverse();
let mut to_clip = vec![];
for tri in intersecting_tris {
let idx = indices[tri as usize];
to_clip.extend_from_slice(&[
inv_pos * vertices[idx[0] as usize],
inv_pos * vertices[idx[1] as usize],
inv_pos * vertices[idx[2] as usize],
]);
// There is no need to clip if the triangle is fully inside of the Aabb.
// Note that we can’t take a shortcut for the case where all the vertices are
// outside of the Aabb, because the Aabb can still instersect the edges or face.
if !(aabb.contains_local_point(&to_clip[0])
&& aabb.contains_local_point(&to_clip[1])
&& aabb.contains_local_point(&to_clip[2]))
{
aabb.clip_polygon_with_workspace(&mut to_clip, &mut clip_workspace);
}
if to_clip.len() >= 3 {
let base_i = new_vertices.len();
for i in 1..to_clip.len() - 1 {
new_indices.push([base_i as u32, (base_i + i) as u32, (base_i + i + 1) as u32]);
}
new_vertices.append(&mut to_clip);
}
}
// The clipping outputs points in the local-space of the cuboid.
// So we need to transform it back.
for pt in &mut new_vertices {
*pt = cuboid_position * *pt;
}
if new_vertices.len() >= 3 {
Some(TriMesh::new(new_vertices, new_indices))
} else {
None
}
}
}