1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
/*
* QR Code generator library (Rust)
*
* Copyright (c) Project Nayuki. (MIT License)
* https://www.nayuki.io/page/qr-code-generator-library
*
* Permission is hereby granted, free of charge, to any person obtaining a copy of
* this software and associated documentation files (the "Software"), to deal in
* the Software without restriction, including without limitation the rights to
* use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
* the Software, and to permit persons to whom the Software is furnished to do so,
* subject to the following conditions:
* - The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
* - The Software is provided "as is", without warranty of any kind, express or
* implied, including but not limited to the warranties of merchantability,
* fitness for a particular purpose and noninfringement. In no event shall the
* authors or copyright holders be liable for any claim, damages or other
* liability, whether in an action of contract, tort or otherwise, arising from,
* out of or in connection with the Software or the use or other dealings in the
* Software.
*/
//! Generates QR Codes from text strings and byte arrays.
//!
//! This project aims to be the best, clearest QR Code generator library.
//! The primary goals are flexible options and absolute correctness.
//! Secondary goals are compact implementation size and good documentation comments.
//!
//! Home page with live JavaScript demo, extensive descriptions, and competitor comparisons:
//! [https://www.nayuki.io/page/qr-code-generator-library](https://www.nayuki.io/page/qr-code-generator-library)
//!
//! # Features
//!
//! Core features:
//!
//! - Significantly shorter code but more documentation comments compared to competing libraries
//! - Supports encoding all 40 versions (sizes) and all 4 error correction levels, as per the QR Code Model 2 standard
//! - Output format: Raw modules/pixels of the QR symbol
//! - Detects finder-like penalty patterns more accurately than other implementations
//! - Encodes numeric and special-alphanumeric text in less space than general text
//! - Open-source code under the permissive MIT License
//!
//! Manual parameters:
//!
//! - User can specify minimum and maximum version numbers allowed, then library will automatically choose smallest version in the range that fits the data
//! - User can specify mask pattern manually, otherwise library will automatically evaluate all 8 masks and select the optimal one
//! - User can specify absolute error correction level, or allow the library to boost it if it doesn't increase the version number
//! - User can create a list of data segments manually and add ECI segments
//!
//! More information about QR Code technology and this library's design can be found on the project home page.
//!
//! # Examples
//!
//! ```
//! extern crate qrcodegen;
//! use qrcodegen::Mask;
//! use qrcodegen::QrCode;
//! use qrcodegen::QrCodeEcc;
//! use qrcodegen::QrSegment;
//! use qrcodegen::Version;
//! ```
//!
//! Simple operation:
//!
//! ```
//! let qr = QrCode::encode_text("Hello, world!",
//! QrCodeEcc::Medium).unwrap();
//! let svg = to_svg_string(&qr, 4); // See qrcodegen-demo
//! ```
//!
//! Manual operation:
//!
//! ```
//! let text: &str = "3141592653589793238462643383";
//! let segs = QrSegment::make_segments(text);
//! let qr = QrCode::encode_segments_advanced(&segs, QrCodeEcc::High,
//! Version::new(5), Version::new(5), Some(Mask::new(2)), false).unwrap();
//! for y in 0 .. qr.size() {
//! for x in 0 .. qr.size() {
//! (... paint qr.get_module(x, y) ...)
//! }
//! }
//! ```
#![forbid(unsafe_code)]
use std::convert::TryFrom;
/*---- QrCode functionality ----*/
/// A QR Code symbol, which is a type of two-dimension barcode.
///
/// Invented by Denso Wave and described in the ISO/IEC 18004 standard.
///
/// Instances of this struct represent an immutable square grid of dark and light cells.
/// The impl provides static factory functions to create a QR Code from text or binary data.
/// The struct and impl cover the QR Code Model 2 specification, supporting all versions
/// (sizes) from 1 to 40, all 4 error correction levels, and 4 character encoding modes.
///
/// Ways to create a QR Code object:
///
/// - High level: Take the payload data and call `QrCode::encode_text()` or `QrCode::encode_binary()`.
/// - Mid level: Custom-make the list of segments and call
/// `QrCode::encode_segments()` or `QrCode::encode_segments_advanced()`.
/// - Low level: Custom-make the array of data codeword bytes (including segment
/// headers and final padding, excluding error correction codewords), supply the
/// appropriate version number, and call the `QrCode::encode_codewords()` constructor.
///
/// (Note that all ways require supplying the desired error correction level.)
#[derive(Clone, PartialEq, Eq)]
pub struct QrCode {
// Scalar parameters:
// The version number of this QR Code, which is between 1 and 40 (inclusive).
// This determines the size of this barcode.
version: Version,
// The width and height of this QR Code, measured in modules, between
// 21 and 177 (inclusive). This is equal to version * 4 + 17.
size: i32,
// The error correction level used in this QR Code.
errorcorrectionlevel: QrCodeEcc,
// The index of the mask pattern used in this QR Code, which is between 0 and 7 (inclusive).
// Even if a QR Code is created with automatic masking requested (mask = None),
// the resulting object still has a mask value between 0 and 7.
mask: Mask,
// Grids of modules/pixels, with dimensions of size*size:
// The modules of this QR Code (false = light, true = dark).
// Immutable after constructor finishes. Accessed through get_module().
modules: Vec<bool>,
// Indicates function modules that are not subjected to masking. Discarded when constructor finishes.
isfunction: Vec<bool>,
}
impl QrCode {
/*---- Static factory functions (high level) ----*/
/// Returns a QR Code representing the given Unicode text string at the given error correction level.
///
/// As a conservative upper bound, this function is guaranteed to succeed for strings that have 738 or fewer Unicode
/// code points (not UTF-8 code units) if the low error correction level is used. The smallest possible
/// QR Code version is automatically chosen for the output. The ECC level of the result may be higher than
/// the ecl argument if it can be done without increasing the version.
///
/// Returns a wrapped `QrCode` if successful, or `Err` if the
/// data is too long to fit in any version at the given ECC level.
pub fn encode_text(text: &str, ecl: QrCodeEcc) -> Result<Self,DataTooLong> {
let segs: Vec<QrSegment> = QrSegment::make_segments(text);
QrCode::encode_segments(&segs, ecl)
}
/// Returns a QR Code representing the given binary data at the given error correction level.
///
/// This function always encodes using the binary segment mode, not any text mode. The maximum number of
/// bytes allowed is 2953. The smallest possible QR Code version is automatically chosen for the output.
/// The ECC level of the result may be higher than the ecl argument if it can be done without increasing the version.
///
/// Returns a wrapped `QrCode` if successful, or `Err` if the
/// data is too long to fit in any version at the given ECC level.
pub fn encode_binary(data: &[u8], ecl: QrCodeEcc) -> Result<Self,DataTooLong> {
let segs: [QrSegment; 1] = [QrSegment::make_bytes(data)];
QrCode::encode_segments(&segs, ecl)
}
/*---- Static factory functions (mid level) ----*/
/// Returns a QR Code representing the given segments at the given error correction level.
///
/// The smallest possible QR Code version is automatically chosen for the output. The ECC level
/// of the result may be higher than the ecl argument if it can be done without increasing the version.
///
/// This function allows the user to create a custom sequence of segments that switches
/// between modes (such as alphanumeric and byte) to encode text in less space.
/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
///
/// Returns a wrapped `QrCode` if successful, or `Err` if the
/// data is too long to fit in any version at the given ECC level.
pub fn encode_segments(segs: &[QrSegment], ecl: QrCodeEcc) -> Result<Self,DataTooLong> {
QrCode::encode_segments_advanced(segs, ecl, Version::MIN, Version::MAX, None, true)
}
/// Returns a QR Code representing the given segments with the given encoding parameters.
///
/// The smallest possible QR Code version within the given range is automatically
/// chosen for the output. Iff boostecl is `true`, then the ECC level of the result
/// may be higher than the ecl argument if it can be done without increasing the
/// version. The mask number is either between 0 to 7 (inclusive) to force that
/// mask, or `None` to automatically choose an appropriate mask (which may be slow).
///
/// This function allows the user to create a custom sequence of segments that switches
/// between modes (such as alphanumeric and byte) to encode text in less space.
/// This is a mid-level API; the high-level API is `encode_text()` and `encode_binary()`.
///
/// Returns a wrapped `QrCode` if successful, or `Err` if the data is too
/// long to fit in any version in the given range at the given ECC level.
pub fn encode_segments_advanced(segs: &[QrSegment], mut ecl: QrCodeEcc,
minversion: Version, maxversion: Version, mask: Option<Mask>, boostecl: bool)
-> Result<Self,DataTooLong> {
assert!(minversion <= maxversion, "Invalid value");
// Find the minimal version number to use
let mut version: Version = minversion;
let datausedbits: usize = loop {
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8; // Number of data bits available
let dataused: Option<usize> = QrSegment::get_total_bits(segs, version);
if dataused.map_or(false, |n| n <= datacapacitybits) {
break dataused.unwrap(); // This version number is found to be suitable
} else if version >= maxversion { // All versions in the range could not fit the given data
return Err(match dataused {
None => DataTooLong::SegmentTooLong,
Some(n) => DataTooLong::DataOverCapacity(n, datacapacitybits),
});
} else {
version = Version::new(version.value() + 1);
}
};
// Increase the error correction level while the data still fits in the current version number
for &newecl in &[QrCodeEcc::Medium, QrCodeEcc::Quartile, QrCodeEcc::High] { // From low to high
if boostecl && datausedbits <= QrCode::get_num_data_codewords(version, newecl) * 8 {
ecl = newecl;
}
}
// Concatenate all segments to create the data bit string
let mut bb = BitBuffer(Vec::new());
for seg in segs {
bb.append_bits(seg.mode.mode_bits(), 4);
bb.append_bits(u32::try_from(seg.numchars).unwrap(), seg.mode.num_char_count_bits(version));
bb.0.extend_from_slice(&seg.data);
}
debug_assert_eq!(bb.0.len(), datausedbits);
// Add terminator and pad up to a byte if applicable
let datacapacitybits: usize = QrCode::get_num_data_codewords(version, ecl) * 8;
debug_assert!(bb.0.len() <= datacapacitybits);
let numzerobits: usize = std::cmp::min(4, datacapacitybits - bb.0.len());
bb.append_bits(0, u8::try_from(numzerobits).unwrap());
let numzerobits: usize = bb.0.len().wrapping_neg() & 7;
bb.append_bits(0, u8::try_from(numzerobits).unwrap());
debug_assert_eq!(bb.0.len() % 8, 0);
// Pad with alternating bytes until data capacity is reached
for &padbyte in [0xEC, 0x11].iter().cycle() {
if bb.0.len() >= datacapacitybits {
break;
}
bb.append_bits(padbyte, 8);
}
// Pack bits into bytes in big endian
let mut datacodewords = vec![0u8; bb.0.len() / 8];
for (i, &bit) in bb.0.iter().enumerate() {
datacodewords[i >> 3] |= u8::from(bit) << (7 - (i & 7));
}
// Create the QR Code object
Ok(QrCode::encode_codewords(version, ecl, &datacodewords, mask))
}
/*---- Constructor (low level) ----*/
/// Creates a new QR Code with the given version number,
/// error correction level, data codeword bytes, and mask number.
///
/// This is a low-level API that most users should not use directly.
/// A mid-level API is the `encode_segments()` function.
pub fn encode_codewords(ver: Version, ecl: QrCodeEcc, datacodewords: &[u8], mut msk: Option<Mask>) -> Self {
// Initialize fields
let size = usize::from(ver.value()) * 4 + 17;
let mut result = Self {
version: ver,
size: size as i32,
mask: Mask::new(0), // Dummy value
errorcorrectionlevel: ecl,
modules : vec![false; size * size], // Initially all light
isfunction: vec![false; size * size],
};
// Compute ECC, draw modules
result.draw_function_patterns();
let allcodewords: Vec<u8> = result.add_ecc_and_interleave(datacodewords);
result.draw_codewords(&allcodewords);
// Do masking
if msk.is_none() { // Automatically choose best mask
let mut minpenalty = std::i32::MAX;
for i in 0u8 .. 8 {
let i = Mask::new(i);
result.apply_mask(i);
result.draw_format_bits(i);
let penalty: i32 = result.get_penalty_score();
if penalty < minpenalty {
msk = Some(i);
minpenalty = penalty;
}
result.apply_mask(i); // Undoes the mask due to XOR
}
}
let msk: Mask = msk.unwrap();
result.mask = msk;
result.apply_mask(msk); // Apply the final choice of mask
result.draw_format_bits(msk); // Overwrite old format bits
result.isfunction.clear();
result.isfunction.shrink_to_fit();
result
}
/*---- Public methods ----*/
/// Returns this QR Code's version, in the range [1, 40].
pub fn version(&self) -> Version {
self.version
}
/// Returns this QR Code's size, in the range [21, 177].
pub fn size(&self) -> i32 {
self.size
}
/// Returns this QR Code's error correction level.
pub fn error_correction_level(&self) -> QrCodeEcc {
self.errorcorrectionlevel
}
/// Returns this QR Code's mask, in the range [0, 7].
pub fn mask(&self) -> Mask {
self.mask
}
/// Returns the color of the module (pixel) at the given coordinates,
/// which is `false` for light or `true` for dark.
///
/// The top left corner has the coordinates (x=0, y=0). If the given
/// coordinates are out of bounds, then `false` (light) is returned.
pub fn get_module(&self, x: i32, y: i32) -> bool {
(0 .. self.size).contains(&x) && (0 .. self.size).contains(&y) && self.module(x, y)
}
// Returns the color of the module at the given coordinates, which must be in bounds.
fn module(&self, x: i32, y: i32) -> bool {
self.modules[(y * self.size + x) as usize]
}
// Returns a mutable reference to the module's color at the given coordinates, which must be in bounds.
fn module_mut(&mut self, x: i32, y: i32) -> &mut bool {
&mut self.modules[(y * self.size + x) as usize]
}
/*---- Private helper methods for constructor: Drawing function modules ----*/
// Reads this object's version field, and draws and marks all function modules.
fn draw_function_patterns(&mut self) {
// Draw horizontal and vertical timing patterns
let size: i32 = self.size;
for i in 0 .. size {
self.set_function_module(6, i, i % 2 == 0);
self.set_function_module(i, 6, i % 2 == 0);
}
// Draw 3 finder patterns (all corners except bottom right; overwrites some timing modules)
self.draw_finder_pattern(3, 3);
self.draw_finder_pattern(size - 4, 3);
self.draw_finder_pattern(3, size - 4);
// Draw numerous alignment patterns
let alignpatpos: Vec<i32> = self.get_alignment_pattern_positions();
let numalign: usize = alignpatpos.len();
for i in 0 .. numalign {
for j in 0 .. numalign {
// Don't draw on the three finder corners
if !(i == 0 && j == 0 || i == 0 && j == numalign - 1 || i == numalign - 1 && j == 0) {
self.draw_alignment_pattern(alignpatpos[i], alignpatpos[j]);
}
}
}
// Draw configuration data
self.draw_format_bits(Mask::new(0)); // Dummy mask value; overwritten later in the constructor
self.draw_version();
}
// Draws two copies of the format bits (with its own error correction code)
// based on the given mask and this object's error correction level field.
fn draw_format_bits(&mut self, mask: Mask) {
// Calculate error correction code and pack bits
let bits: u32 = {
// errcorrlvl is uint2, mask is uint3
let data: u32 = u32::from(self.errorcorrectionlevel.format_bits() << 3 | mask.value());
let mut rem: u32 = data;
for _ in 0 .. 10 {
rem = (rem << 1) ^ ((rem >> 9) * 0x537);
}
(data << 10 | rem) ^ 0x5412 // uint15
};
debug_assert_eq!(bits >> 15, 0);
// Draw first copy
for i in 0 .. 6 {
self.set_function_module(8, i, get_bit(bits, i));
}
self.set_function_module(8, 7, get_bit(bits, 6));
self.set_function_module(8, 8, get_bit(bits, 7));
self.set_function_module(7, 8, get_bit(bits, 8));
for i in 9 .. 15 {
self.set_function_module(14 - i, 8, get_bit(bits, i));
}
// Draw second copy
let size: i32 = self.size;
for i in 0 .. 8 {
self.set_function_module(size - 1 - i, 8, get_bit(bits, i));
}
for i in 8 .. 15 {
self.set_function_module(8, size - 15 + i, get_bit(bits, i));
}
self.set_function_module(8, size - 8, true); // Always dark
}
// Draws two copies of the version bits (with its own error correction code),
// based on this object's version field, iff 7 <= version <= 40.
fn draw_version(&mut self) {
if self.version.value() < 7 {
return;
}
// Calculate error correction code and pack bits
let bits: u32 = {
let data = u32::from(self.version.value()); // uint6, in the range [7, 40]
let mut rem: u32 = data;
for _ in 0 .. 12 {
rem = (rem << 1) ^ ((rem >> 11) * 0x1F25);
}
data << 12 | rem // uint18
};
debug_assert_eq!(bits >> 18, 0);
// Draw two copies
for i in 0 .. 18 {
let bit: bool = get_bit(bits, i);
let a: i32 = self.size - 11 + i % 3;
let b: i32 = i / 3;
self.set_function_module(a, b, bit);
self.set_function_module(b, a, bit);
}
}
// Draws a 9*9 finder pattern including the border separator,
// with the center module at (x, y). Modules can be out of bounds.
fn draw_finder_pattern(&mut self, x: i32, y: i32) {
for dy in -4 ..= 4 {
for dx in -4 ..= 4 {
let xx: i32 = x + dx;
let yy: i32 = y + dy;
if (0 .. self.size).contains(&xx) && (0 .. self.size).contains(&yy) {
let dist: i32 = std::cmp::max(dx.abs(), dy.abs()); // Chebyshev/infinity norm
self.set_function_module(xx, yy, dist != 2 && dist != 4);
}
}
}
}
// Draws a 5*5 alignment pattern, with the center module
// at (x, y). All modules must be in bounds.
fn draw_alignment_pattern(&mut self, x: i32, y: i32) {
for dy in -2 ..= 2 {
for dx in -2 ..= 2 {
self.set_function_module(x + dx, y + dy, std::cmp::max(dx.abs(), dy.abs()) != 1);
}
}
}
// Sets the color of a module and marks it as a function module.
// Only used by the constructor. Coordinates must be in bounds.
fn set_function_module(&mut self, x: i32, y: i32, isdark: bool) {
*self.module_mut(x, y) = isdark;
self.isfunction[(y * self.size + x) as usize] = true;
}
/*---- Private helper methods for constructor: Codewords and masking ----*/
// Returns a new byte string representing the given data with the appropriate error correction
// codewords appended to it, based on this object's version and error correction level.
fn add_ecc_and_interleave(&self, data: &[u8]) -> Vec<u8> {
let ver: Version = self.version;
let ecl: QrCodeEcc = self.errorcorrectionlevel;
assert_eq!(data.len(), QrCode::get_num_data_codewords(ver, ecl), "Illegal argument");
// Calculate parameter numbers
let numblocks: usize = QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl);
let blockecclen: usize = QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl);
let rawcodewords: usize = QrCode::get_num_raw_data_modules(ver) / 8;
let numshortblocks: usize = numblocks - rawcodewords % numblocks;
let shortblocklen: usize = rawcodewords / numblocks;
// Split data into blocks and append ECC to each block
let mut blocks = Vec::<Vec<u8>>::with_capacity(numblocks);
let rsdiv: Vec<u8> = QrCode::reed_solomon_compute_divisor(blockecclen);
let mut k: usize = 0;
for i in 0 .. numblocks {
let datlen: usize = shortblocklen - blockecclen + usize::from(i >= numshortblocks);
let mut dat = data[k .. k+datlen].to_vec();
k += datlen;
let ecc: Vec<u8> = QrCode::reed_solomon_compute_remainder(&dat, &rsdiv);
if i < numshortblocks {
dat.push(0);
}
dat.extend_from_slice(&ecc);
blocks.push(dat);
}
// Interleave (not concatenate) the bytes from every block into a single sequence
let mut result = Vec::<u8>::with_capacity(rawcodewords);
for i in 0 ..= shortblocklen {
for (j, block) in blocks.iter().enumerate() {
// Skip the padding byte in short blocks
if i != shortblocklen - blockecclen || j >= numshortblocks {
result.push(block[i]);
}
}
}
result
}
// Draws the given sequence of 8-bit codewords (data and error correction) onto the entire
// data area of this QR Code. Function modules need to be marked off before this is called.
fn draw_codewords(&mut self, data: &[u8]) {
assert_eq!(data.len(), QrCode::get_num_raw_data_modules(self.version) / 8, "Illegal argument");
let mut i: usize = 0; // Bit index into the data
// Do the funny zigzag scan
let mut right: i32 = self.size - 1;
while right >= 1 { // Index of right column in each column pair
if right == 6 {
right = 5;
}
for vert in 0 .. self.size { // Vertical counter
for j in 0 .. 2 {
let x: i32 = right - j; // Actual x coordinate
let upward: bool = (right + 1) & 2 == 0;
let y: i32 = if upward { self.size - 1 - vert } else { vert }; // Actual y coordinate
if !self.isfunction[(y * self.size + x) as usize] && i < data.len() * 8 {
*self.module_mut(x, y) = get_bit(u32::from(data[i >> 3]), 7 - ((i as i32) & 7));
i += 1;
}
// If this QR Code has any remainder bits (0 to 7), they were assigned as
// 0/false/light by the constructor and are left unchanged by this method
}
}
right -= 2;
}
debug_assert_eq!(i, data.len() * 8);
}
// XORs the codeword modules in this QR Code with the given mask pattern.
// The function modules must be marked and the codeword bits must be drawn
// before masking. Due to the arithmetic of XOR, calling apply_mask() with
// the same mask value a second time will undo the mask. A final well-formed
// QR Code needs exactly one (not zero, two, etc.) mask applied.
fn apply_mask(&mut self, mask: Mask) {
for y in 0 .. self.size {
for x in 0 .. self.size {
let invert: bool = match mask.value() {
0 => (x + y) % 2 == 0,
1 => y % 2 == 0,
2 => x % 3 == 0,
3 => (x + y) % 3 == 0,
4 => (x / 3 + y / 2) % 2 == 0,
5 => x * y % 2 + x * y % 3 == 0,
6 => (x * y % 2 + x * y % 3) % 2 == 0,
7 => ((x + y) % 2 + x * y % 3) % 2 == 0,
_ => unreachable!(),
};
*self.module_mut(x, y) ^= invert & !self.isfunction[(y * self.size + x) as usize];
}
}
}
// Calculates and returns the penalty score based on state of this QR Code's current modules.
// This is used by the automatic mask choice algorithm to find the mask pattern that yields the lowest score.
fn get_penalty_score(&self) -> i32 {
let mut result: i32 = 0;
let size: i32 = self.size;
// Adjacent modules in row having same color, and finder-like patterns
for y in 0 .. size {
let mut runcolor = false;
let mut runx: i32 = 0;
let mut runhistory = FinderPenalty::new(size);
for x in 0 .. size {
if self.module(x, y) == runcolor {
runx += 1;
if runx == 5 {
result += PENALTY_N1;
} else if runx > 5 {
result += 1;
}
} else {
runhistory.add_history(runx);
if !runcolor {
result += runhistory.count_patterns() * PENALTY_N3;
}
runcolor = self.module(x, y);
runx = 1;
}
}
result += runhistory.terminate_and_count(runcolor, runx) * PENALTY_N3;
}
// Adjacent modules in column having same color, and finder-like patterns
for x in 0 .. size {
let mut runcolor = false;
let mut runy: i32 = 0;
let mut runhistory = FinderPenalty::new(size);
for y in 0 .. size {
if self.module(x, y) == runcolor {
runy += 1;
if runy == 5 {
result += PENALTY_N1;
} else if runy > 5 {
result += 1;
}
} else {
runhistory.add_history(runy);
if !runcolor {
result += runhistory.count_patterns() * PENALTY_N3;
}
runcolor = self.module(x, y);
runy = 1;
}
}
result += runhistory.terminate_and_count(runcolor, runy) * PENALTY_N3;
}
// 2*2 blocks of modules having same color
for y in 0 .. size-1 {
for x in 0 .. size-1 {
let color: bool = self.module(x, y);
if color == self.module(x + 1, y) &&
color == self.module(x, y + 1) &&
color == self.module(x + 1, y + 1) {
result += PENALTY_N2;
}
}
}
// Balance of dark and light modules
let dark: i32 = self.modules.iter().copied().map(i32::from).sum();
let total: i32 = size * size; // Note that size is odd, so dark/total != 1/2
// Compute the smallest integer k >= 0 such that (45-5k)% <= dark/total <= (55+5k)%
let k: i32 = ((dark * 20 - total * 10).abs() + total - 1) / total - 1;
debug_assert!(0 <= k && k <= 9);
result += k * PENALTY_N4;
debug_assert!(0 <= result && result <= 2568888); // Non-tight upper bound based on default values of PENALTY_N1, ..., N4
result
}
/*---- Private helper functions ----*/
// Returns an ascending list of positions of alignment patterns for this version number.
// Each position is in the range [0,177), and are used on both the x and y axes.
// This could be implemented as lookup table of 40 variable-length lists of unsigned bytes.
fn get_alignment_pattern_positions(&self) -> Vec<i32> {
let ver: u8 = self.version.value();
if ver == 1 {
vec![]
} else {
let numalign = i32::from(ver) / 7 + 2;
let step: i32 = if ver == 32 { 26 } else
{(i32::from(ver) * 4 + numalign * 2 + 1) / (numalign * 2 - 2) * 2};
let mut result: Vec<i32> = (0 .. numalign-1).map(
|i| self.size - 7 - i * step).collect();
result.push(6);
result.reverse();
result
}
}
// Returns the number of data bits that can be stored in a QR Code of the given version number, after
// all function modules are excluded. This includes remainder bits, so it might not be a multiple of 8.
// The result is in the range [208, 29648]. This could be implemented as a 40-entry lookup table.
fn get_num_raw_data_modules(ver: Version) -> usize {
let ver = usize::from(ver.value());
let mut result: usize = (16 * ver + 128) * ver + 64;
if ver >= 2 {
let numalign: usize = ver / 7 + 2;
result -= (25 * numalign - 10) * numalign - 55;
if ver >= 7 {
result -= 36;
}
}
debug_assert!((208 ..= 29648).contains(&result));
result
}
// Returns the number of 8-bit data (i.e. not error correction) codewords contained in any
// QR Code of the given version number and error correction level, with remainder bits discarded.
// This stateless pure function could be implemented as a (40*4)-cell lookup table.
fn get_num_data_codewords(ver: Version, ecl: QrCodeEcc) -> usize {
QrCode::get_num_raw_data_modules(ver) / 8
- QrCode::table_get(&ECC_CODEWORDS_PER_BLOCK , ver, ecl)
* QrCode::table_get(&NUM_ERROR_CORRECTION_BLOCKS, ver, ecl)
}
// Returns an entry from the given table based on the given values.
fn table_get(table: &'static [[i8; 41]; 4], ver: Version, ecl: QrCodeEcc) -> usize {
table[ecl.ordinal()][usize::from(ver.value())] as usize
}
// Returns a Reed-Solomon ECC generator polynomial for the given degree. This could be
// implemented as a lookup table over all possible parameter values, instead of as an algorithm.
fn reed_solomon_compute_divisor(degree: usize) -> Vec<u8> {
assert!((1 ..= 255).contains(°ree), "Degree out of range");
// Polynomial coefficients are stored from highest to lowest power, excluding the leading term which is always 1.
// For example the polynomial x^3 + 255x^2 + 8x + 93 is stored as the uint8 array [255, 8, 93].
let mut result = vec![0u8; degree - 1];
result.push(1); // Start off with the monomial x^0
// Compute the product polynomial (x - r^0) * (x - r^1) * (x - r^2) * ... * (x - r^{degree-1}),
// and drop the highest monomial term which is always 1x^degree.
// Note that r = 0x02, which is a generator element of this field GF(2^8/0x11D).
let mut root: u8 = 1;
for _ in 0 .. degree { // Unused variable i
// Multiply the current product by (x - r^i)
for j in 0 .. degree {
result[j] = QrCode::reed_solomon_multiply(result[j], root);
if j + 1 < result.len() {
result[j] ^= result[j + 1];
}
}
root = QrCode::reed_solomon_multiply(root, 0x02);
}
result
}
// Returns the Reed-Solomon error correction codeword for the given data and divisor polynomials.
fn reed_solomon_compute_remainder(data: &[u8], divisor: &[u8]) -> Vec<u8> {
let mut result = vec![0u8; divisor.len()];
for b in data { // Polynomial division
let factor: u8 = b ^ result.remove(0);
result.push(0);
for (x, &y) in result.iter_mut().zip(divisor.iter()) {
*x ^= QrCode::reed_solomon_multiply(y, factor);
}
}
result
}
// Returns the product of the two given field elements modulo GF(2^8/0x11D).
// All inputs are valid. This could be implemented as a 256*256 lookup table.
fn reed_solomon_multiply(x: u8, y: u8) -> u8 {
// Russian peasant multiplication
let mut z: u8 = 0;
for i in (0 .. 8).rev() {
z = (z << 1) ^ ((z >> 7) * 0x1D);
z ^= ((y >> i) & 1) * x;
}
z
}
}
/*---- Helper struct for get_penalty_score() ----*/
struct FinderPenalty {
qr_size: i32,
run_history: [i32; 7],
}
impl FinderPenalty {
pub fn new(size: i32) -> Self {
Self {
qr_size: size,
run_history: [0i32; 7],
}
}
// Pushes the given value to the front and drops the last value.
pub fn add_history(&mut self, mut currentrunlength: i32) {
if self.run_history[0] == 0 {
currentrunlength += self.qr_size; // Add light border to initial run
}
let rh = &mut self.run_history;
for i in (0 .. rh.len()-1).rev() {
rh[i + 1] = rh[i];
}
rh[0] = currentrunlength;
}
// Can only be called immediately after a light run is added, and returns either 0, 1, or 2.
pub fn count_patterns(&self) -> i32 {
let rh = &self.run_history;
let n = rh[1];
debug_assert!(n <= self.qr_size * 3);
let core = n > 0 && rh[2] == n && rh[3] == n * 3 && rh[4] == n && rh[5] == n;
( i32::from(core && rh[0] >= n * 4 && rh[6] >= n)
+ i32::from(core && rh[6] >= n * 4 && rh[0] >= n))
}
// Must be called at the end of a line (row or column) of modules.
pub fn terminate_and_count(mut self, currentruncolor: bool, mut currentrunlength: i32) -> i32 {
if currentruncolor { // Terminate dark run
self.add_history(currentrunlength);
currentrunlength = 0;
}
currentrunlength += self.qr_size; // Add light border to final run
self.add_history(currentrunlength);
self.count_patterns()
}
}
/*---- Constants and tables ----*/
// For use in get_penalty_score(), when evaluating which mask is best.
const PENALTY_N1: i32 = 3;
const PENALTY_N2: i32 = 3;
const PENALTY_N3: i32 = 40;
const PENALTY_N4: i32 = 10;
static ECC_CODEWORDS_PER_BLOCK: [[i8; 41]; 4] = [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[-1, 7, 10, 15, 20, 26, 18, 20, 24, 30, 18, 20, 24, 26, 30, 22, 24, 28, 30, 28, 28, 28, 28, 30, 30, 26, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Low
[-1, 10, 16, 26, 18, 24, 16, 18, 22, 22, 26, 30, 22, 22, 24, 24, 28, 28, 26, 26, 26, 26, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28], // Medium
[-1, 13, 22, 18, 26, 18, 24, 18, 22, 20, 24, 28, 26, 24, 20, 30, 24, 28, 28, 26, 30, 28, 30, 30, 30, 30, 28, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // Quartile
[-1, 17, 28, 22, 16, 22, 28, 26, 26, 24, 28, 24, 28, 22, 24, 24, 30, 28, 28, 26, 28, 30, 24, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30], // High
];
static NUM_ERROR_CORRECTION_BLOCKS: [[i8; 41]; 4] = [
// Version: (note that index 0 is for padding, and is set to an illegal value)
//0, 1, 2, 3, 4, 5, 6, 7, 8, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40 Error correction level
[-1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 6, 6, 7, 8, 8, 9, 9, 10, 12, 12, 12, 13, 14, 15, 16, 17, 18, 19, 19, 20, 21, 22, 24, 25], // Low
[-1, 1, 1, 1, 2, 2, 4, 4, 4, 5, 5, 5, 8, 9, 9, 10, 10, 11, 13, 14, 16, 17, 17, 18, 20, 21, 23, 25, 26, 28, 29, 31, 33, 35, 37, 38, 40, 43, 45, 47, 49], // Medium
[-1, 1, 1, 2, 2, 4, 4, 6, 6, 8, 8, 8, 10, 12, 16, 12, 17, 16, 18, 21, 20, 23, 23, 25, 27, 29, 34, 34, 35, 38, 40, 43, 45, 48, 51, 53, 56, 59, 62, 65, 68], // Quartile
[-1, 1, 1, 2, 4, 4, 4, 5, 6, 8, 8, 11, 11, 16, 16, 18, 16, 19, 21, 25, 25, 25, 34, 30, 32, 35, 37, 40, 42, 45, 48, 51, 54, 57, 60, 63, 66, 70, 74, 77, 81], // High
];
/*---- QrCodeEcc functionality ----*/
/// The error correction level in a QR Code symbol.
#[derive(Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub enum QrCodeEcc {
/// The QR Code can tolerate about 7% erroneous codewords.
Low ,
/// The QR Code can tolerate about 15% erroneous codewords.
Medium ,
/// The QR Code can tolerate about 25% erroneous codewords.
Quartile,
/// The QR Code can tolerate about 30% erroneous codewords.
High ,
}
impl QrCodeEcc {
// Returns an unsigned 2-bit integer (in the range 0 to 3).
fn ordinal(self) -> usize {
use QrCodeEcc::*;
match self {
Low => 0,
Medium => 1,
Quartile => 2,
High => 3,
}
}
// Returns an unsigned 2-bit integer (in the range 0 to 3).
fn format_bits(self) -> u8 {
use QrCodeEcc::*;
match self {
Low => 1,
Medium => 0,
Quartile => 3,
High => 2,
}
}
}
/*---- QrSegment functionality ----*/
/// A segment of character/binary/control data in a QR Code symbol.
///
/// Instances of this struct are immutable.
///
/// The mid-level way to create a segment is to take the payload data
/// and call a static factory function such as `QrSegment::make_numeric()`.
/// The low-level way to create a segment is to custom-make the bit buffer
/// and call the `QrSegment::new()` constructor with appropriate values.
///
/// This segment struct imposes no length restrictions, but QR Codes have restrictions.
/// Even in the most favorable conditions, a QR Code can only hold 7089 characters of data.
/// Any segment longer than this is meaningless for the purpose of generating QR Codes.
#[derive(Clone, PartialEq, Eq)]
pub struct QrSegment {
// The mode indicator of this segment. Accessed through mode().
mode: QrSegmentMode,
// The length of this segment's unencoded data. Measured in characters for
// numeric/alphanumeric/kanji mode, bytes for byte mode, and 0 for ECI mode.
// Not the same as the data's bit length. Accessed through num_chars().
numchars: usize,
// The data bits of this segment. Accessed through data().
data: Vec<bool>,
}
impl QrSegment {
/*---- Static factory functions (mid level) ----*/
/// Returns a segment representing the given binary data encoded in byte mode.
///
/// All input byte slices are acceptable.
///
/// Any text string can be converted to UTF-8 bytes and encoded as a byte mode segment.
pub fn make_bytes(data: &[u8]) -> Self {
let mut bb = BitBuffer(Vec::with_capacity(data.len() * 8));
for &b in data {
bb.append_bits(u32::from(b), 8);
}
QrSegment::new(QrSegmentMode::Byte, data.len(), bb.0)
}
/// Returns a segment representing the given string of decimal digits encoded in numeric mode.
///
/// Panics if the string contains non-digit characters.
pub fn make_numeric(text: &str) -> Self {
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 3 + (text.len() + 2) / 3));
let mut accumdata: u32 = 0;
let mut accumcount: u8 = 0;
for b in text.bytes() {
assert!((b'0' ..= b'9').contains(&b), "String contains non-numeric characters");
accumdata = accumdata * 10 + u32::from(b - b'0');
accumcount += 1;
if accumcount == 3 {
bb.append_bits(accumdata, 10);
accumdata = 0;
accumcount = 0;
}
}
if accumcount > 0 { // 1 or 2 digits remaining
bb.append_bits(accumdata, accumcount * 3 + 1);
}
QrSegment::new(QrSegmentMode::Numeric, text.len(), bb.0)
}
/// Returns a segment representing the given text string encoded in alphanumeric mode.
///
/// The characters allowed are: 0 to 9, A to Z (uppercase only), space,
/// dollar, percent, asterisk, plus, hyphen, period, slash, colon.
///
/// Panics if the string contains non-encodable characters.
pub fn make_alphanumeric(text: &str) -> Self {
let mut bb = BitBuffer(Vec::with_capacity(text.len() * 5 + (text.len() + 1) / 2));
let mut accumdata: u32 = 0;
let mut accumcount: u32 = 0;
for c in text.chars() {
let i: usize = ALPHANUMERIC_CHARSET.find(c)
.expect("String contains unencodable characters in alphanumeric mode");
accumdata = accumdata * 45 + u32::try_from(i).unwrap();
accumcount += 1;
if accumcount == 2 {
bb.append_bits(accumdata, 11);
accumdata = 0;
accumcount = 0;
}
}
if accumcount > 0 { // 1 character remaining
bb.append_bits(accumdata, 6);
}
QrSegment::new(QrSegmentMode::Alphanumeric, text.len(), bb.0)
}
/// Returns a list of zero or more segments to represent the given Unicode text string.
///
/// The result may use various segment modes and switch
/// modes to optimize the length of the bit stream.
pub fn make_segments(text: &str) -> Vec<Self> {
if text.is_empty() {
vec![]
} else {
vec![
if QrSegment::is_numeric(text) {
QrSegment::make_numeric(text)
} else if QrSegment::is_alphanumeric(text) {
QrSegment::make_alphanumeric(text)
} else {
QrSegment::make_bytes(text.as_bytes())
}
]
}
}
/// Returns a segment representing an Extended Channel Interpretation
/// (ECI) designator with the given assignment value.
pub fn make_eci(assignval: u32) -> Self {
let mut bb = BitBuffer(Vec::with_capacity(24));
if assignval < (1 << 7) {
bb.append_bits(assignval, 8);
} else if assignval < (1 << 14) {
bb.append_bits(0b10, 2);
bb.append_bits(assignval, 14);
} else if assignval < 1_000_000 {
bb.append_bits(0b110, 3);
bb.append_bits(assignval, 21);
} else {
panic!("ECI assignment value out of range");
}
QrSegment::new(QrSegmentMode::Eci, 0, bb.0)
}
/*---- Constructor (low level) ----*/
/// Creates a new QR Code segment with the given attributes and data.
///
/// The character count (numchars) must agree with the mode and
/// the bit buffer length, but the constraint isn't checked.
pub fn new(mode: QrSegmentMode, numchars: usize, data: Vec<bool>) -> Self {
Self { mode, numchars, data }
}
/*---- Instance field getters ----*/
/// Returns the mode indicator of this segment.
pub fn mode(&self) -> QrSegmentMode {
self.mode
}
/// Returns the character count field of this segment.
pub fn num_chars(&self) -> usize {
self.numchars
}
/// Returns the data bits of this segment.
pub fn data(&self) -> &Vec<bool> {
&self.data
}
/*---- Other static functions ----*/
// Calculates and returns the number of bits needed to encode the given
// segments at the given version. The result is None if a segment has too many
// characters to fit its length field, or the total bits exceeds usize::MAX.
fn get_total_bits(segs: &[Self], version: Version) -> Option<usize> {
let mut result: usize = 0;
for seg in segs {
let ccbits: u8 = seg.mode.num_char_count_bits(version);
// ccbits can be as large as 16, but usize can be as small as 16
if let Some(limit) = 1usize.checked_shl(ccbits.into()) {
if seg.numchars >= limit {
return None; // The segment's length doesn't fit the field's bit width
}
}
result = result.checked_add(4 + usize::from(ccbits))?;
result = result.checked_add(seg.data.len())?;
}
Some(result)
}
/// Tests whether the given string can be encoded as a segment in numeric mode.
///
/// A string is encodable iff each character is in the range 0 to 9.
pub fn is_numeric(text: &str) -> bool {
text.chars().all(|c| ('0' ..= '9').contains(&c))
}
/// Tests whether the given string can be encoded as a segment in alphanumeric mode.
///
/// A string is encodable iff each character is in the following set: 0 to 9, A to Z
/// (uppercase only), space, dollar, percent, asterisk, plus, hyphen, period, slash, colon.
pub fn is_alphanumeric(text: &str) -> bool {
text.chars().all(|c| ALPHANUMERIC_CHARSET.contains(c))
}
}
// The set of all legal characters in alphanumeric mode,
// where each character value maps to the index in the string.
static ALPHANUMERIC_CHARSET: &str = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ $%*+-./:";
/*---- QrSegmentMode functionality ----*/
/// Describes how a segment's data bits are interpreted.
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum QrSegmentMode {
Numeric,
Alphanumeric,
Byte,
Kanji,
Eci,
}
impl QrSegmentMode {
// Returns an unsigned 4-bit integer value (range 0 to 15)
// representing the mode indicator bits for this mode object.
fn mode_bits(self) -> u32 {
use QrSegmentMode::*;
match self {
Numeric => 0x1,
Alphanumeric => 0x2,
Byte => 0x4,
Kanji => 0x8,
Eci => 0x7,
}
}
// Returns the bit width of the character count field for a segment in this mode
// in a QR Code at the given version number. The result is in the range [0, 16].
fn num_char_count_bits(self, ver: Version) -> u8 {
use QrSegmentMode::*;
(match self {
Numeric => [10, 12, 14],
Alphanumeric => [ 9, 11, 13],
Byte => [ 8, 16, 16],
Kanji => [ 8, 10, 12],
Eci => [ 0, 0, 0],
})[usize::from((ver.value() + 7) / 17)]
}
}
/*---- Bit buffer functionality ----*/
/// An appendable sequence of bits (0s and 1s).
///
/// Mainly used by QrSegment.
pub struct BitBuffer(pub Vec<bool>);
impl BitBuffer {
/// Appends the given number of low-order bits of the given value to this buffer.
///
/// Requires len ≤ 31 and val < 2<sup>len</sup>.
pub fn append_bits(&mut self, val: u32, len: u8) {
assert!(len <= 31 && val >> len == 0, "Value out of range");
self.0.extend((0 .. i32::from(len)).rev().map(|i| get_bit(val, i))); // Append bit by bit
}
}
/*---- Miscellaneous values ----*/
/// The error type when the supplied data does not fit any QR Code version.
///
/// Ways to handle this exception include:
///
/// - Decrease the error correction level if it was greater than `QrCodeEcc::Low`.
/// - If the `encode_segments_advanced()` function was called, then increase the maxversion
/// argument if it was less than `Version::MAX`. (This advice does not apply to the
/// other factory functions because they search all versions up to `Version::MAX`.)
/// - Split the text data into better or optimal segments in order to reduce the number of bits required.
/// - Change the text or binary data to be shorter.
/// - Change the text to fit the character set of a particular segment mode (e.g. alphanumeric).
/// - Propagate the error upward to the caller/user.
#[derive(Debug, Clone)]
pub enum DataTooLong {
SegmentTooLong,
DataOverCapacity(usize, usize),
}
impl std::error::Error for DataTooLong {}
impl std::fmt::Display for DataTooLong {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
match *self {
Self::SegmentTooLong => write!(f, "Segment too long"),
Self::DataOverCapacity(datalen, maxcapacity) =>
write!(f, "Data length = {} bits, Max capacity = {} bits", datalen, maxcapacity),
}
}
}
/// A number between 1 and 40 (inclusive).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Version(u8);
impl Version {
/// The minimum version number supported in the QR Code Model 2 standard.
pub const MIN: Version = Version( 1);
/// The maximum version number supported in the QR Code Model 2 standard.
pub const MAX: Version = Version(40);
/// Creates a version object from the given number.
///
/// Panics if the number is outside the range [1, 40].
pub fn new(ver: u8) -> Self {
assert!((Version::MIN.value() ..= Version::MAX.value()).contains(&ver), "Version number out of range");
Self(ver)
}
/// Returns the value, which is in the range [1, 40].
pub fn value(self) -> u8 {
self.0
}
}
/// A number between 0 and 7 (inclusive).
#[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Debug)]
pub struct Mask(u8);
impl Mask {
/// Creates a mask object from the given number.
///
/// Panics if the number is outside the range [0, 7].
pub fn new(mask: u8) -> Self {
assert!(mask <= 7, "Mask value out of range");
Self(mask)
}
/// Returns the value, which is in the range [0, 7].
pub fn value(self) -> u8 {
self.0
}
}
// Returns true iff the i'th bit of x is set to 1.
fn get_bit(x: u32, i: i32) -> bool {
(x >> i) & 1 != 0
}