1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
//! Geometric models of OpenCV/ROS cameras for photogrammetry
//!
//! # About
//!
//! This crate provides a geometric model of a camera compatible with OpenCV as
//! used by ROS (the Robot Operating System). The crate is in pure Rust, can be
//! compiled in `no_std` mode, implements the
//! [`IntrinsicsParameters`](https://docs.rs/cam-geom/latest/cam_geom/trait.IntrinsicParameters.html)
//! trait from the [`cam-geom`](https://crates.io/crates/cam-geom) and provides
//! support to read and write camera models in various formats.
//!
//! In greater detail:
//!
//! - Compatible with camera calibrations made by the ROS
//!   [`camera_calibration`](http://wiki.ros.org/camera_calibration) package,
//!   including
//!   [monocular](http://wiki.ros.org/camera_calibration/Tutorials/MonocularCalibration)
//!   and
//!   [stereo](http://wiki.ros.org/camera_calibration/Tutorials/StereoCalibration)
//!   calibrations. Despite this compatibility, does not depend on ROS or
//!   OpenCV. (Furthermore, there is also no dependency on the excellent
//!   [rosrust](https://crates.io/crates/rosrust) crate).
//! - Can be compiled without the Rust standard library or allocator to support
//!   embedded applications.
//! - The [`RosOpenCvIntrinsics`](struct.RosOpenCvIntrinsics.html) type
//!   implements [the `IntrinsicsParameters` trait from the `cam-geom`
//!   crate](https://docs.rs/cam-geom/latest/cam_geom/trait.IntrinsicParameters.html).
//!   Thus, a
//!   [`cam_geom::Camera`](https://docs.rs/cam-geom/latest/cam_geom/struct.Camera.html)
//!   can be created to handle intrinsic parameters using `RosOpenCvIntrinsics`
//!   and camera pose handled by [the `ExtrinsicParameters` struct from
//!   `cam-geom`](https://docs.rs/cam-geom/latest/cam_geom/struct.ExtrinsicParameters.html).
//!   (See the example below.)
//! - When compiled with the `serde-serialize` feature, read camera calibrations
//!   saved by the ROS `camera_calibration/cameracalibrator.py` node in
//!   `~/.ros/camera_info/camera_name.yaml` with
//!   [`from_ros_yaml`](fn.from_ros_yaml.html).
//! - When compiled with the `serde-serialize` feature, read and write the
//!   [`RosOpenCvIntrinsics`](struct.RosOpenCvIntrinsics.html) struct using
//!   serde.
//!
//! # Example - read a ROS YAML file and create a `cam_geom::Camera` from it.
//!
//! Let's say we have YAML file saved by the ROS
//! `camera_calibration/cameracalibrator.py` node. How can we create a
//! [`cam_geom::Camera`](https://docs.rs/cam-geom/latest/cam_geom/struct.Camera.html)
//! from this?
//!
//! ```
//! use nalgebra::{Matrix2x3, Unit, Vector3};
//!
//! // Here we have the YAML file contents hardcoded in a string. Ordinarily, you
//! // would read this from a file such as `~/.ros/camera_info/camera_name.yaml`, but
//! // for this example, it is hardcoded here.
//! let yaml_buf = b"image_width: 659
//! image_height: 494
//! camera_name: Basler_21029382
//! camera_matrix:
//!   rows: 3
//!   cols: 3
//!   data: [516.385667640757, 0, 339.167079537312, 0, 516.125799367807, 227.37993524141, 0, 0, 1]
//! distortion_model: plumb_bob
//! distortion_coefficients:
//!   rows: 1
//!   cols: 5
//!   data: [-0.331416226762003, 0.143584747015566, 0.00314558656668844, -0.00393597842852019, 0]
//! rectification_matrix:
//!   rows: 3
//!   cols: 3
//!   data: [1, 0, 0, 0, 1, 0, 0, 0, 1]
//! projection_matrix:
//!   rows: 3
//!   cols: 4
//!   data: [444.369750976562, 0, 337.107817516087, 0, 0, 474.186859130859, 225.062742824321, 0, 0, 0, 1, 0]";
//!
//! // The ROS YAML file does not contain the pose (no extrinsic parameters). Here we
//! // specify them directly. The camera is at (10,0,0), looking at (0,0,0), with up (0,0,1).
//! let camcenter = Vector3::new(10.0, 0.0, 0.0);
//! let lookat = Vector3::new(0.0, 0.0, 0.0);
//! let up = Unit::new_normalize(Vector3::new(0.0, 0.0, 1.0));
//! let pose = cam_geom::ExtrinsicParameters::from_view(&camcenter, &lookat, &up);
//!
//! // We need the `serde-serialize` feature for the `from_ros_yaml` function.
//! #[cfg(feature = "serde-serialize")]
//! {
//!     let from_ros = opencv_ros_camera::from_ros_yaml(&yaml_buf[..]).unwrap();
//!
//!     // Finally, create camera from intrinsic and extrinsic parameters.
//!     let camera = cam_geom::Camera::new(from_ros.intrinsics, pose);
//! }
//! ```
//!
//! # testing
//!
//! Test `no_std` compilation with:
//!
//! ```text
//! # install target with: "rustup target add thumbv7em-none-eabihf"
//! cargo check --no-default-features --target thumbv7em-none-eabihf
//! ```
//!
//! Run unit tests with:
//!
//! ```text
//! cargo test
//! cargo test --features serde-serialize
//! ```
//!
//! serde support requires std.
//!
//! # re-render README.md
//!
//! ```text
//! cargo install cargo-readme
//! cargo readme > README.md
//! ```

#![deny(rust_2018_idioms, unsafe_code, missing_docs)]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate core as std;

#[cfg(feature = "serde-serialize")]
use serde::{Deserialize, Serialize};

use nalgebra::{
    allocator::Allocator,
    base::storage::{Owned, Storage},
    convert, one, zero, DefaultAllocator, Dim, Matrix3, OMatrix, RealField, SMatrix, Vector2,
    Vector3, Vector5, U1, U2, U3,
};

use cam_geom::{
    coordinate_system::CameraFrame, ray_bundle_types::SharedOriginRayBundle, Bundle,
    IntrinsicParameters, Pixels, Points, RayBundle,
};

#[cfg(feature = "std")]
mod ros_file_support;
#[cfg(feature = "std")]
pub use ros_file_support::{NamedIntrinsicParameters, RosCameraInfo, RosMatrix};

#[cfg(feature = "serde-serialize")]
pub use ros_file_support::from_ros_yaml;

/// Possible errors.
#[derive(Debug)]
#[cfg_attr(feature = "std", derive(thiserror::Error))]
#[non_exhaustive]
pub enum Error {
    #[cfg_attr(feature = "std", error("invalid input"))]
    /// invalid input
    InvalidInput,
    #[cfg_attr(feature = "std", error("error parsing YAML"))]
    /// error parsing YAML
    YamlParseError,
    #[cfg_attr(feature = "std", error("unknown distortion model"))]
    /// unknown distortion model
    UnknownDistortionModel,
    #[cfg_attr(feature = "std", error("bad matrix size"))]
    /// bad matrix size
    BadMatrixSize,
}

#[cfg(feature = "serde-serialize")]
impl std::convert::From<serde_yaml::Error> for Error {
    #[inline]
    fn from(_orig: serde_yaml::Error) -> Self {
        Error::YamlParseError
    }
}

/// Result type
pub type Result<T> = std::result::Result<T, Error>;

/// A perspective camera model with distortion compatible with OpenCV and ROS.
///
/// This camera model is compatible with OpenCV and ROS, including stereo
/// rectification and Brown-Conrady
/// [distortion](https://en.wikipedia.org/wiki/Distortion_(optics)). To load
/// from a ROS YAML file, see the [`from_ros_yaml`](fn.from_ros_yaml.html)
/// function.
///
/// See [this page](http://wiki.ros.org/image_pipeline/CameraInfo) for an
/// expanded definition of the parameters.
///
/// To convert from a
/// [`NamedIntrinsicParameters`](struct.NamedIntrinsicParameters.html) struct,
/// use its
/// [`intrinsics`](struct.NamedIntrinsicParameters.html#structfield.intrinsics)
/// field.
///
/// See the [module-level documentation for more information](index.html).
#[derive(Debug, Clone, PartialEq)]
pub struct RosOpenCvIntrinsics<R: RealField> {
    /// If these intrinsics have zero skew, they are "opencv compatible" and this is `true`.
    pub is_opencv_compatible: bool,
    /// The intrinsic parameter matrix `P`.
    pub p: SMatrix<R, 3, 4>,
    /// The intrinsic parameter matrix `K`. Scaled from `P`.
    pub k: SMatrix<R, 3, 3>,
    /// The non-linear distortion parameters `D` specifying image warping.
    pub distortion: Distortion<R>,
    /// The stereo rectification matrix.
    pub rect: SMatrix<R, 3, 3>,
    cache: Cache<R>,
}

impl<R: RealField> From<cam_geom::IntrinsicParametersPerspective<R>> for RosOpenCvIntrinsics<R> {
    fn from(orig: cam_geom::IntrinsicParametersPerspective<R>) -> Self {
        Self::from_params(orig.fx(), orig.skew(), orig.fy(), orig.cx(), orig.cy())
    }
}

#[derive(Debug, Clone, PartialEq)]
struct Cache<R: RealField> {
    pnorm: SMatrix<R, 3, 4>,
    rect_t: Matrix3<R>,
    rti: Matrix3<R>,
}

/// Undistorted 2D pixel locations
///
/// See [the wikipedia page on
/// distortion](https://en.wikipedia.org/wiki/Distortion_(optics)) for a
/// discussion. This type represents pixel coordinates which have been
/// undistorted.
///
/// This is a newtype wrapping an `nalgebra::Matrix`.
pub struct UndistortedPixels<R: RealField, NPTS: Dim, STORAGE> {
    /// The undistorted pixel coordinates.
    pub data: nalgebra::Matrix<R, NPTS, U2, STORAGE>,
}

impl<R: RealField> RosOpenCvIntrinsics<R> {
    /// Construct intrinsics from raw components.
    ///
    /// Returns `Err(Error::InvalidInput)` if `rect` cannot be inverted.
    pub fn from_components(
        p: SMatrix<R, 3, 4>,
        k: SMatrix<R, 3, 3>,
        distortion: Distortion<R>,
        rect: SMatrix<R, 3, 3>,
    ) -> Result<Self> {
        let is_opencv_compatible = p[(0, 1)] == zero();
        let pnorm = p.clone() / p[(2, 2)].clone();
        let rect_t = rect.transpose();
        let mut rti = Matrix3::<R>::identity();
        if !nalgebra::linalg::try_invert_to(rect_t.clone(), &mut rti) {
            return Err(Error::InvalidInput);
        }

        let cache = Cache { pnorm, rect_t, rti };
        Ok(Self {
            is_opencv_compatible,
            p,
            k,
            distortion,
            rect,
            cache,
        })
    }

    /// Construct intrinsics from individual parameters with no distortion.
    ///
    /// `fx` and `fy` are the horizontal and vertical focal lengths. `skew` is
    /// the pixel skew (typically near zero). `cx` and `cy` is the center of the
    /// optical axis in pixel coordinates.
    #[inline]
    pub fn from_params(fx: R, skew: R, fy: R, cx: R, cy: R) -> Self {
        Self::from_params_with_distortion(fx, skew, fy, cx, cy, Distortion::zero())
    }

    /// Construct intrinsics from individual parameters.
    ///
    /// `fx` and `fy` are the horizontal and vertical focal lengths. `skew` is
    /// the pixel skew (typically near zero). `cx` and `cy` is the center of the
    /// optical axis in pixel coordinates. `distortion` is a vector of the
    /// distortion terms.
    pub fn from_params_with_distortion(
        fx: R,
        skew: R,
        fy: R,
        cx: R,
        cy: R,
        distortion: Distortion<R>,
    ) -> Self {
        let zero: R = zero();
        let one: R = one();
        let p = SMatrix::<R, 3, 4>::new(
            fx.clone(),
            skew.clone(),
            cx.clone(),
            zero.clone(),
            zero.clone(),
            fy.clone(),
            cy.clone(),
            zero.clone(),
            zero.clone(),
            zero.clone(),
            one.clone(),
            zero.clone(),
        );
        let k =
            SMatrix::<R, 3, 3>::new(fx, skew, cx, zero.clone(), fy, cy, zero.clone(), zero, one);
        let rect = Matrix3::<R>::identity();
        // Since rect can be inverted, this will not fail and we can unwrap.
        Self::from_components(p, k, distortion, rect).unwrap()
    }

    /// Convert undistorted pixel coordinates to distorted pixel coordinates.
    ///
    /// This will take coordinates from, e.g. a linear camera model, warp them
    /// into their distorted counterparts. This distortion thus models the
    /// action of a real lens.
    #[allow(clippy::many_single_char_names)]
    pub fn distort<NPTS, IN>(
        &self,
        undistorted: &UndistortedPixels<R, NPTS, IN>,
    ) -> Pixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        NPTS: Dim,
        IN: nalgebra::base::storage::Storage<R, NPTS, U2>,
        DefaultAllocator: Allocator<R, NPTS, U2>,
    {
        let mut result = Pixels::new(OMatrix::zeros_generic(
            NPTS::from_usize(undistorted.data.nrows()),
            U2::from_usize(2),
        ));

        let p = &self.p;
        let fx = p[(0, 0)].clone();
        let cx = p[(0, 2)].clone();
        let tx = p[(0, 3)].clone();
        let fy = p[(1, 1)].clone();
        let cy = p[(1, 2)].clone();
        let ty = p[(1, 3)].clone();

        let one: R = one();
        let two: R = convert(2.0);

        let d = &self.distortion;
        let k1 = d.radial1();
        let k2 = d.radial2();
        let p1 = d.tangential1();
        let p2 = d.tangential2();
        let k3 = d.radial3();

        let k = &self.k;
        let kfx = k[(0, 0)].clone();
        let kcx = k[(0, 2)].clone();
        let kfy = k[(1, 1)].clone();
        let kcy = k[(1, 2)].clone();

        for i in 0..undistorted.data.nrows() {
            let x = (undistorted.data[(i, 0)].clone() - cx.clone() - tx.clone()) / fx.clone();
            let y = (undistorted.data[(i, 1)].clone() - cy.clone() - ty.clone()) / fy.clone();

            let xy1 = Vector3::new(x.clone(), y.clone(), one.clone());
            let xyw = self.cache.rect_t.clone() * xy1;
            let xp = xyw[0].clone() / xyw[2].clone();
            let yp = xyw[1].clone() / xyw[2].clone();

            let r2 = xp.clone() * xp.clone() + yp.clone() * yp.clone();
            let r4 = r2.clone() * r2.clone();
            let r6 = r4.clone() * r2.clone();
            let a1 = two.clone() * xp.clone() * yp.clone();

            let barrel = one.clone()
                + k1.clone() * r2.clone()
                + k2.clone() * r4.clone()
                + k3.clone() * r6.clone();
            let xpp = xp.clone() * barrel.clone()
                + p1.clone() * a1.clone()
                + p2.clone() * (r2.clone() + two.clone() * (xp.clone() * xp.clone()));
            let ypp = yp.clone() * barrel.clone()
                + p1.clone() * (r2.clone() + two.clone() * (yp.clone() * yp.clone()))
                + p2.clone() * a1.clone();

            let u = xpp.clone() * kfx.clone() + kcx.clone();
            let v = ypp.clone() * kfy.clone() + kcy.clone();

            result.data[(i, 0)] = u;
            result.data[(i, 1)] = v;
        }
        result
    }

    /// Convert distorted pixel coordinates to undistorted pixel coordinates.
    ///
    /// This will take distorted coordinates from, e.g. detections from a real
    /// camera image, and undo the effect of the distortion model. This
    /// "undistortion" thus converts coordinates from a real lens into
    /// coordinates that can be used with a linear camera model.
    ///
    /// This method calls [undistort_ext](Self::undistort_ext) using the default
    /// termination criteria.
    pub fn undistort<NPTS, IN>(
        &self,
        distorted: &Pixels<R, NPTS, IN>,
    ) -> UndistortedPixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        NPTS: Dim,
        IN: nalgebra::base::storage::Storage<R, NPTS, U2>,
        DefaultAllocator: Allocator<R, NPTS, U2>,
    {
        self.undistort_ext(distorted, None)
    }

    /// Convert distorted pixel coordinates to undistorted pixel coordinates.
    ///
    /// This will take distorted coordinates from, e.g. detections from a real
    /// camera image, and undo the effect of the distortion model. This
    /// "undistortion" thus converts coordinates from a real lens into
    /// coordinates that can be used with a linear camera model.
    ///
    /// If the termination criteria are not specified, the default of five
    /// iterations is used.
    #[allow(clippy::many_single_char_names)]
    pub fn undistort_ext<NPTS, IN>(
        &self,
        distorted: &Pixels<R, NPTS, IN>,
        criteria: impl Into<Option<TermCriteria>>,
    ) -> UndistortedPixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        NPTS: Dim,
        IN: nalgebra::base::storage::Storage<R, NPTS, U2>,
        DefaultAllocator: Allocator<R, NPTS, U2>,
    {
        let criteria = criteria.into().unwrap_or(TermCriteria::MaxIter(5));
        let mut result = UndistortedPixels {
            data: OMatrix::zeros_generic(
                NPTS::from_usize(distorted.data.nrows()),
                U2::from_usize(2),
            ),
        };

        let k = &self.k;
        let fx = k[(0, 0)].clone();
        let cx = k[(0, 2)].clone();
        let fy = k[(1, 1)].clone();
        let cy = k[(1, 2)].clone();

        let p = &self.p;
        let fxp = p[(0, 0)].clone();
        let cxp = p[(0, 2)].clone();
        let fyp = p[(1, 1)].clone();
        let cyp = p[(1, 2)].clone();

        let d = &self.distortion;

        let t1 = d.tangential1();
        let t2 = d.tangential2();

        let one: R = one();
        let two: R = convert(2.0);

        for i in 0..distorted.data.nrows() {
            // Apply intrinsic parameters to get normalized, distorted coordinates
            let xd = (distorted.data[(i, 0)].clone() - cx.clone()) / fx.clone();
            let yd = (distorted.data[(i, 1)].clone() - cy.clone()) / fy.clone();

            let mut x = xd.clone();
            let mut y = yd.clone();
            let mut count = 0;

            loop {
                if let TermCriteria::MaxIter(max_count) = criteria {
                    count += 1;
                    if count > max_count {
                        break;
                    }
                }

                let r2 = x.clone() * x.clone() + y.clone() * y.clone();
                let icdist = one.clone()
                    / (one.clone()
                        + ((d.radial3() * r2.clone() + d.radial2()) * r2.clone() + d.radial1())
                            * r2.clone());
                let delta_x = two.clone() * t1.clone() * x.clone() * y.clone()
                    + t2.clone() * (r2.clone() + two.clone() * x.clone() * x.clone());
                let delta_y = t1.clone() * (r2.clone() + two.clone() * y.clone() * y.clone())
                    + two.clone() * t2.clone() * x.clone() * y.clone();
                x = (xd.clone() - delta_x) * icdist.clone();
                y = (yd.clone() - delta_y) * icdist.clone();

                if let TermCriteria::Eps(eps) = criteria {
                    let r2 = x.clone() * x.clone() + y.clone() * y.clone();
                    let cdist = one.clone()
                        + ((d.radial3() * r2.clone() + d.radial2()) * r2.clone() + d.radial1())
                            * r2.clone();
                    let delta_x = two.clone() * t1.clone() * x.clone() * y.clone()
                        + t2.clone() * (r2.clone() + two.clone() * x.clone() * x.clone());
                    let delta_y = t1.clone() * (r2.clone() + two.clone() * y.clone() * y.clone())
                        + two.clone() * t2.clone() * x.clone() * y.clone();
                    let xp0 = x.clone() * cdist.clone() + delta_x.clone();
                    let yp0 = y.clone() * cdist.clone() + delta_y.clone();

                    let xywt = self.cache.rti.clone() * Vector3::new(xp0, yp0, one.clone());
                    let xp = xywt[0].clone() / xywt[2].clone();
                    let yp = xywt[1].clone() / xywt[2].clone();

                    let up = x.clone() * fxp.clone() + cxp.clone();
                    let vp = y.clone() * fyp.clone() + cyp.clone();

                    let error = (Vector2::new(xp, yp) - Vector2::new(up, vp)).norm();
                    if error < convert(eps) {
                        break;
                    }
                }
            }

            let xp = x;
            let yp = y;

            let uh = Vector3::new(xp.clone(), yp.clone(), one.clone());
            let xywt = self.cache.rti.clone() * uh.clone();
            let x = xywt[0].clone() / xywt[2].clone();
            let y = xywt[1].clone() / xywt[2].clone();

            let up = x.clone() * fxp.clone() + cxp.clone();
            let vp = y.clone() * fyp.clone() + cyp.clone();
            result.data[(i, 0)] = up.clone();
            result.data[(i, 1)] = vp.clone();
        }
        result
    }

    /// Convert 3D coordinates in `CameraFrame` to undistorted pixel coords.
    pub fn camera_to_undistorted_pixel<IN, NPTS>(
        &self,
        camera: &Points<CameraFrame, R, NPTS, IN>,
    ) -> UndistortedPixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        IN: Storage<R, NPTS, U3>,
        NPTS: Dim,
        DefaultAllocator: Allocator<R, NPTS, U2>,
        DefaultAllocator: Allocator<R, U1, U2>,
    {
        let mut result = UndistortedPixels {
            data: OMatrix::zeros_generic(NPTS::from_usize(camera.data.nrows()), U2::from_usize(2)),
        };

        // TODO: can we remove this loop?
        for i in 0..camera.data.nrows() {
            let x = nalgebra::Point3::new(
                camera.data[(i, 0)].clone(),
                camera.data[(i, 1)].clone(),
                camera.data[(i, 2)].clone(),
            )
            .to_homogeneous();
            let rst = self.p.clone() * x;

            result.data[(i, 0)] = rst[0].clone() / rst[2].clone();
            result.data[(i, 1)] = rst[1].clone() / rst[2].clone();
        }
        result
    }

    /// Convert undistorted pixel coordinates to 3D coords in the `CameraFrame`.
    pub fn undistorted_pixel_to_camera<IN, NPTS>(
        &self,
        undistorteds: &UndistortedPixels<R, NPTS, IN>,
    ) -> RayBundle<CameraFrame, SharedOriginRayBundle<R>, R, NPTS, Owned<R, NPTS, U3>>
    where
        IN: Storage<R, NPTS, U2>,
        NPTS: Dim,
        DefaultAllocator: Allocator<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, U1, U2>,
    {
        let p = self.cache.pnorm.clone();

        let mut result = RayBundle::new_shared_zero_origin(OMatrix::zeros_generic(
            NPTS::from_usize(undistorteds.data.nrows()),
            U3::from_usize(3),
        ));

        // TODO: eliminate this loop
        for i in 0..undistorteds.data.nrows() {
            // Create a slice view of a single pixel coordinate.
            let undistorted = UndistortedPixels {
                data: undistorteds.data.row(i),
            };

            let uv_rect_x = undistorted.data[(0, 0)].clone();
            let uv_rect_y = undistorted.data[(0, 1)].clone();

            // Convert undistorted point into camcoords.
            let y = (uv_rect_y.clone() - p[(1, 2)].clone() - p[(1, 3)].clone()) / p[(1, 1)].clone();
            let x = (uv_rect_x.clone()
                - p[(0, 1)].clone() * y.clone()
                - p[(0, 2)].clone()
                - p[(0, 3)].clone())
                / p[(0, 0)].clone();
            let z = one();

            result.data[(i, 0)] = x;
            result.data[(i, 1)] = y;
            result.data[(i, 2)] = z;
        }
        result
    }
}

/// Specifies distortion using the Brown-Conrady "plumb bob" model.
#[derive(Debug, Clone, PartialEq)]
#[cfg_attr(feature = "serde-serialize", derive(Serialize, Deserialize))]
pub struct Distortion<R: RealField>(Vector5<R>);

impl<R: RealField> Distortion<R> {
    /// build from vector ordered [radial1, radial2, tangential1, tangential2, radial3]
    #[inline]
    pub fn from_opencv_vec(v: Vector5<R>) -> Self {
        Distortion(v)
    }

    /// OpenCV ordered vector of distortion terms.
    ///
    /// The order is [radial1, radial2, tangential1, tangential2, radial3].
    #[inline]
    pub fn opencv_vec(&self) -> &Vector5<R> {
        &self.0
    }

    /// Construct a zero distortion model.
    #[inline]
    pub fn zero() -> Self {
        Distortion(Vector5::new(zero(), zero(), zero(), zero(), zero()))
    }

    /// The first radial distortion term, sometimes called `k1`.
    #[inline]
    pub fn radial1(&self) -> R {
        self.0[0].clone()
    }

    /// The first radial distortion term, sometimes called `k1` (mutable reference).
    #[inline]
    pub fn radial1_mut(&mut self) -> &mut R {
        &mut self.0[0]
    }

    /// The second radial distortion term, sometimes called `k2`.
    #[inline]
    pub fn radial2(&self) -> R {
        self.0[1].clone()
    }

    /// The second radial distortion term, sometimes called `k2` (mutable reference).
    #[inline]
    pub fn radial2_mut(&mut self) -> &mut R {
        &mut self.0[1]
    }

    /// The first tangential distortion term, sometimes called `p1`.
    #[inline]
    pub fn tangential1(&self) -> R {
        self.0[2].clone()
    }

    /// The first tangential distortion term, sometimes called `p1` (mutable reference).
    #[inline]
    pub fn tangential1_mut(&mut self) -> &mut R {
        &mut self.0[2]
    }

    /// The second tangential distortion term, sometimes called `p2`.
    #[inline]
    pub fn tangential2(&self) -> R {
        self.0[3].clone()
    }

    /// The second tangential distortion term, sometimes called `p2` (mutable reference).
    #[inline]
    pub fn tangential2_mut(&mut self) -> &mut R {
        &mut self.0[3]
    }

    /// The third radial distortion term, sometimes called `k3`.
    #[inline]
    pub fn radial3(&self) -> R {
        self.0[4].clone()
    }

    /// The third radial distortion term, sometimes called `k3` (mutable reference).
    #[inline]
    pub fn radial3_mut(&mut self) -> &mut R {
        &mut self.0[4]
    }

    /// Return `true` if there is approximately zero distortion, else `false`.
    pub fn is_linear(&self) -> bool {
        let v = &self.0;
        let sum_squared = v.dot(v);
        sum_squared < nalgebra::convert(1e-16)
    }
}

impl<R: RealField> IntrinsicParameters<R> for RosOpenCvIntrinsics<R> {
    type BundleType = SharedOriginRayBundle<R>;

    fn pixel_to_camera<IN, NPTS>(
        &self,
        pixels: &Pixels<R, NPTS, IN>,
    ) -> RayBundle<CameraFrame, Self::BundleType, R, NPTS, Owned<R, NPTS, U3>>
    where
        Self::BundleType: Bundle<R>,
        IN: Storage<R, NPTS, U2>,
        NPTS: Dim,
        DefaultAllocator: Allocator<R, NPTS, U2>,
        DefaultAllocator: Allocator<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, U1, U2>,
    {
        let undistorted = self.undistort::<NPTS, IN>(pixels);
        self.undistorted_pixel_to_camera(&undistorted)
    }

    fn camera_to_pixel<IN, NPTS>(
        &self,
        camera: &Points<CameraFrame, R, NPTS, IN>,
    ) -> Pixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        IN: Storage<R, NPTS, U3>,
        NPTS: Dim,
        DefaultAllocator: Allocator<R, NPTS, U2>,
    {
        let undistorted = self.camera_to_undistorted_pixel(camera);
        self.distort(&undistorted)
    }
}

/// Extension trait to add `world_to_undistorted_pixel()` method.
pub trait CameraExt<R: RealField> {
    /// Convert 3D coordinates in the `WorldFrame` to undistorted pixel coordinates.
    fn world_to_undistorted_pixel<NPTS, InStorage>(
        &self,
        world: &Points<cam_geom::WorldFrame, R, NPTS, InStorage>,
    ) -> UndistortedPixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        NPTS: Dim,
        InStorage: Storage<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U2>;
}

impl<R: RealField> CameraExt<R> for cam_geom::Camera<R, RosOpenCvIntrinsics<R>> {
    fn world_to_undistorted_pixel<NPTS, InStorage>(
        &self,
        world: &Points<cam_geom::WorldFrame, R, NPTS, InStorage>,
    ) -> UndistortedPixels<R, NPTS, Owned<R, NPTS, U2>>
    where
        NPTS: Dim,
        InStorage: Storage<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U3>,
        DefaultAllocator: Allocator<R, NPTS, U2>,
    {
        let camera_frame = self.extrinsics().world_to_camera(world);
        self.intrinsics().camera_to_undistorted_pixel(&camera_frame)
    }
}

#[cfg(feature = "serde-serialize")]
impl<R: RealField + serde::Serialize> serde::Serialize for RosOpenCvIntrinsics<R> {
    fn serialize<S>(&self, serializer: S) -> std::result::Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        use serde::ser::SerializeStruct;

        // 4 is the number of fields we serialize from the struct.
        let mut state = serializer.serialize_struct("RosOpenCvIntrinsics", 4)?;
        state.serialize_field("p", &self.p)?;
        state.serialize_field("k", &self.k)?;
        state.serialize_field("distortion", &self.distortion)?;
        state.serialize_field("rect", &self.rect)?;
        state.end()
    }
}

#[cfg(feature = "serde-serialize")]
impl<'de, R: RealField + serde::Deserialize<'de>> serde::Deserialize<'de>
    for RosOpenCvIntrinsics<R>
{
    fn deserialize<D>(deserializer: D) -> std::result::Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        use serde::de;
        use std::fmt;

        #[derive(Deserialize)]
        #[serde(field_identifier, rename_all = "lowercase")]
        enum Field {
            P,
            K,
            Distortion,
            Rect,
        }

        struct IntrinsicParametersVisitor<'de, R2: RealField + serde::Deserialize<'de>>(
            std::marker::PhantomData<&'de R2>,
        );

        impl<'de, R2: RealField + serde::Deserialize<'de>> serde::de::Visitor<'de>
            for IntrinsicParametersVisitor<'de, R2>
        {
            type Value = RosOpenCvIntrinsics<R2>;

            fn expecting(&self, formatter: &mut fmt::Formatter<'_>) -> fmt::Result {
                formatter.write_str("struct RosOpenCvIntrinsics")
            }

            fn visit_seq<V>(
                self,
                mut seq: V,
            ) -> std::result::Result<RosOpenCvIntrinsics<R2>, V::Error>
            where
                V: serde::de::SeqAccess<'de>,
            {
                let p = seq
                    .next_element()?
                    .ok_or_else(|| de::Error::invalid_length(0, &self))?;
                let k = seq
                    .next_element()?
                    .ok_or_else(|| de::Error::invalid_length(1, &self))?;
                let distortion = seq
                    .next_element()?
                    .ok_or_else(|| de::Error::invalid_length(1, &self))?;
                let rect = seq
                    .next_element()?
                    .ok_or_else(|| de::Error::invalid_length(1, &self))?;
                // Ok(RosOpenCvIntrinsics::from_components(p, k, distortion, rect))
                RosOpenCvIntrinsics::from_components(p, k, distortion, rect)
                    .map_err(|e| de::Error::custom(e))
            }

            fn visit_map<V>(
                self,
                mut map: V,
            ) -> std::result::Result<RosOpenCvIntrinsics<R2>, V::Error>
            where
                V: serde::de::MapAccess<'de>,
            {
                let mut p = None;
                let mut k = None;
                let mut distortion = None;
                let mut rect = None;
                while let Some(key) = map.next_key()? {
                    match key {
                        Field::P => {
                            if p.is_some() {
                                return Err(de::Error::duplicate_field("p"));
                            }
                            p = Some(map.next_value()?);
                        }
                        Field::K => {
                            if k.is_some() {
                                return Err(de::Error::duplicate_field("k"));
                            }
                            k = Some(map.next_value()?);
                        }
                        Field::Distortion => {
                            if distortion.is_some() {
                                return Err(de::Error::duplicate_field("distortion"));
                            }
                            distortion = Some(map.next_value()?);
                        }
                        Field::Rect => {
                            if rect.is_some() {
                                return Err(de::Error::duplicate_field("rect"));
                            }
                            rect = Some(map.next_value()?);
                        }
                    }
                }
                let p = p.ok_or_else(|| de::Error::missing_field("p"))?;
                let k = k.ok_or_else(|| de::Error::missing_field("k"))?;
                let distortion =
                    distortion.ok_or_else(|| de::Error::missing_field("distortion"))?;
                let rect = rect.ok_or_else(|| de::Error::missing_field("rect"))?;
                RosOpenCvIntrinsics::from_components(p, k, distortion, rect)
                    .map_err(|e| de::Error::custom(e))
            }
        }

        const FIELDS: &'static [&'static str] = &["p", "k", "distortion", "rect"];
        deserializer.deserialize_struct(
            "RosOpenCvIntrinsics",
            FIELDS,
            IntrinsicParametersVisitor(std::marker::PhantomData),
        )
    }
}

#[cfg(feature = "serde-serialize")]
fn _test_intrinsics_is_serialize() {
    // Compile-time test to ensure RosOpenCvIntrinsics implements Serialize trait.
    fn implements<T: serde::Serialize>() {}
    implements::<RosOpenCvIntrinsics<f64>>();
}

#[cfg(feature = "serde-serialize")]
fn _test_intrinsics_is_deserialize() {
    // Compile-time test to ensure RosOpenCvIntrinsics implements Deserialize trait.
    fn implements<'de, T: serde::Deserialize<'de>>() {}
    implements::<RosOpenCvIntrinsics<f64>>();
}

/// The type defines termination criteria for iterative algorithms.
#[derive(Debug, Clone, Copy)]
pub enum TermCriteria {
    /// The maximum number of iterations.
    MaxIter(usize),
    /// The desired accuracy at which the iterative algorithm stops.
    Eps(f64),
}