1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672
use arrow2::datatypes::DataType;
use itertools::Itertools as _;
use nohash_hasher::IntMap;
use parking_lot::RwLock;
use re_log::{debug, trace};
use re_log_types::{
DataCell, DataCellColumn, DataCellError, DataRow, EntityPathHash, ResolvedTimeRange, RowId,
TimeInt, TimePoint, VecDequeRemovalExt as _,
};
use re_types_core::{ComponentName, ComponentNameSet, SizeBytes as _};
use crate::{
DataStore, DataStoreConfig, IndexedBucket, IndexedBucketInner, IndexedTable, MetadataRegistry,
StaticCell, StaticTable, StoreDiff, StoreDiffKind, StoreEvent,
};
// --- Data store ---
#[derive(thiserror::Error, Debug)]
pub enum WriteError {
#[error("The incoming data was inconsistent: {0}")]
DataRead(#[from] re_log_types::DataReadError),
#[error("Error with one or more the underlying data cells")]
DataCell(#[from] DataCellError),
#[error("The inserted data must contain at least one cell")]
Empty,
#[error(
"Component '{component}' failed to typecheck: expected {expected:#?} but got {got:#?}"
)]
TypeCheck {
component: ComponentName,
expected: DataType,
got: DataType,
},
#[error("Attempted to re-use already taken RowId:{0}")]
ReusedRowId(RowId),
}
pub type WriteResult<T> = ::std::result::Result<T, WriteError>;
impl DataStore {
/// Inserts a [`DataRow`]'s worth of components into the datastore.
pub fn insert_row(&mut self, row: &DataRow) -> WriteResult<StoreEvent> {
// TODO(cmc): kind & insert_id need to somehow propagate through the span system.
self.insert_id += 1;
if row.num_cells() == 0 {
return Err(WriteError::Empty);
}
let DataRow {
row_id,
timepoint,
entity_path,
cells,
} = row;
self.metadata_registry
.upsert(*row_id, (timepoint.clone(), entity_path.hash()))?;
re_tracing::profile_function!();
// Update type registry.
// TODO(#1809): not only this should be replaced by a central arrow runtime registry, it should
// also be implemented as a changelog subscriber.
for cell in row.cells().iter() {
self.type_registry
.insert(cell.component_name(), cell.datatype().clone());
}
let entity_path_hash = entity_path.hash();
trace!(
kind = "insert",
id = self.insert_id,
timelines = ?timepoint.iter()
.map(|(timeline, time)| (timeline.name(), timeline.typ().format_utc(*time)))
.collect::<Vec<_>>(),
%entity_path,
components = ?cells.iter().map(|cell| cell.component_name()).collect_vec(),
"insertion started…"
);
let insert_id = self.config.store_insert_ids.then_some(self.insert_id);
let diff = if timepoint.is_static() {
let static_table = self
.static_tables
.entry(entity_path_hash)
.or_insert_with(|| StaticTable::new(entity_path.clone()));
let cells = row
.cells()
.iter()
.filter(|cell| {
static_table
.cells
.get(&cell.component_name())
// Last-write-wins semantics, where ordering is defined by RowId.
.map_or(true, |static_cell| static_cell.row_id < *row_id)
})
.collect_vec();
for cell in &cells {
static_table.cells.insert(
cell.component_name(),
StaticCell {
insert_id,
row_id: *row_id,
cell: (*cell).clone(),
},
);
}
let mut diff = StoreDiff::addition(*row_id, entity_path.clone());
diff.with_cells(cells.into_iter().cloned());
diff
} else {
for (timeline, time) in timepoint.iter() {
let entity_path = entity_path.clone(); // shallow
let index = self
.tables
.entry((entity_path_hash, *timeline))
.or_insert_with(|| IndexedTable::new(*timeline, entity_path));
index.insert_row(&self.config, insert_id, *time, row);
}
let mut diff = StoreDiff::addition(*row_id, entity_path.clone());
diff.at_timepoint(timepoint.clone())
.with_cells(cells.iter().cloned());
diff
};
let event = StoreEvent {
store_id: self.id.clone(),
store_generation: self.generation(),
event_id: self
.event_id
.fetch_add(1, std::sync::atomic::Ordering::Relaxed),
diff,
};
{
let events = &[event.clone()];
if cfg!(debug_assertions) {
let any_event_other_than_addition =
events.iter().any(|e| e.kind != StoreDiffKind::Addition);
assert!(!any_event_other_than_addition);
}
Self::on_events(events);
}
Ok(event)
}
}
impl MetadataRegistry<(TimePoint, EntityPathHash)> {
fn upsert(&mut self, row_id: RowId, data: (TimePoint, EntityPathHash)) -> WriteResult<()> {
match self.entry(row_id) {
std::collections::btree_map::Entry::Occupied(_) => Err(WriteError::ReusedRowId(row_id)),
std::collections::btree_map::Entry::Vacant(entry) => {
// NOTE: In a map, thus on the heap!
let added_size_bytes = row_id.total_size_bytes() + data.total_size_bytes();
// This is valuable information even for a timeless timepoint!
entry.insert(data);
self.heap_size_bytes += added_size_bytes;
Ok(())
}
}
}
}
// --- Temporal ---
impl IndexedTable {
pub fn insert_row(
&mut self,
config: &DataStoreConfig,
insert_id: Option<u64>,
time: TimeInt,
row: &DataRow,
) {
re_tracing::profile_function!();
let components: ComponentNameSet = row.component_names().collect();
// borrowck workaround
let timeline = self.timeline;
let entity_path = self.entity_path.clone(); // shallow
let (_, bucket) = self.find_bucket_mut(time);
let len = bucket.num_rows();
let len_overflow = len > config.indexed_bucket_num_rows;
if len_overflow {
let bucket_size_before = bucket.total_size_bytes();
if let Some((min, second_half)) = bucket.split() {
trace!(
kind = "insert",
timeline = %timeline.name(),
time = timeline.typ().format_utc(time),
%entity_path,
len_limit = config.indexed_bucket_num_rows,
len, len_overflow,
new_time_bound = timeline.typ().format_utc(min),
"splitting off indexed bucket following overflow"
);
self.buckets_size_bytes +=
bucket.total_size_bytes() + second_half.total_size_bytes();
self.buckets_size_bytes -= bucket_size_before;
self.buckets.insert(min, second_half);
return self.insert_row(config, insert_id, time, row);
}
// We couldn't split the bucket, either because it's already too small, or because it
// contains a unique timepoint value that's repeated multiple times.
//
// * If the bucket is that small, then there really is no better thing to do than
// letting it grow some more by appending to it.
//
// * If the timepoint we're trying to insert is smaller or equal to the current upper
// bound of the bucket, then at this point we have no choice but to insert it here
// (by definition, it is impossible that any previous bucket in the chain covers a
// time range that includes this timepoint: buckets are non-overlapping!).
//
// * Otherwise, if the timepoint we're trying to insert is greater than the upper bound
// of the current bucket, then it means that there currently exist no bucket that
// covers a time range which includes this timepoint (if such a bucket existed, then
// we would have stumbled upon it before ever finding the current one!).
// This gives us an opportunity to create a new bucket that starts at the upper
// bound of the current one _excluded_ and that ranges all the way up to the
// timepoint that we're inserting.
// Not only is this a great opportunity to naturally split things up, it's actually
// mandatory to avoid a nasty edge case where one keeps inserting into a full,
// unsplittable bucket and indefinitely creates new single-entry buckets, leading
// to the worst-possible case of fragmentation.
let (bucket_upper_bound, bucket_len) = {
let guard = bucket.inner.read();
(guard.col_time.back().copied(), guard.col_time.len())
};
if let Some(upper_bound) = bucket_upper_bound {
if bucket_len > 2 && time.as_i64() > upper_bound {
let new_time_bound = upper_bound + 1;
debug!(
kind = "insert",
timeline = %timeline.name(),
time = timeline.typ().format_utc(time),
%entity_path,
len_limit = config.indexed_bucket_num_rows,
len, len_overflow,
new_time_bound = timeline.typ().format_utc(TimeInt::new_temporal(new_time_bound)),
"creating brand new indexed bucket following overflow"
);
let (inner, inner_size_bytes) = {
let mut inner = IndexedBucketInner {
time_range: ResolvedTimeRange::new(time, time),
..Default::default()
};
let size_bytes = inner.compute_size_bytes();
(inner, size_bytes)
};
self.buckets.insert(
TimeInt::new_temporal(new_time_bound),
IndexedBucket {
timeline,
inner: RwLock::new(inner),
},
);
self.buckets_size_bytes += inner_size_bytes;
return self.insert_row(config, insert_id, time, row);
}
}
if 0 < config.indexed_bucket_num_rows {
let bucket_time_range = bucket.inner.read().time_range;
re_log::debug_once!("Failed to split bucket on timeline {}", timeline.name());
if 1 < config.indexed_bucket_num_rows
&& bucket_time_range.min() == bucket_time_range.max()
{
re_log::warn_once!(
"Found over {} rows with the same timepoint {:?}={} - perhaps you forgot to update or remove the timeline?",
config.indexed_bucket_num_rows,
bucket.timeline.name(),
bucket.timeline.typ().format_utc(bucket_time_range.min())
);
}
}
}
trace!(
kind = "insert",
timeline = %timeline.name(),
time = timeline.typ().format_utc(time),
%entity_path,
?components,
"inserted into indexed tables"
);
let size_bytes = bucket.insert_row(insert_id, time, row, &components);
self.buckets_size_bytes += size_bytes;
self.buckets_num_rows += 1;
// Insert components last, only if bucket-insert succeeded.
self.all_components.extend(components);
}
}
impl IndexedBucket {
/// Returns the size in bytes of the inserted arrow data.
fn insert_row(
&mut self,
insert_id: Option<u64>,
time: TimeInt,
row: &DataRow,
components: &ComponentNameSet,
) -> u64 {
re_tracing::profile_function!();
let mut size_bytes_added = 0u64;
let _num_rows = self.num_rows() as usize;
let mut inner = self.inner.write();
let IndexedBucketInner {
is_sorted,
time_range,
col_time,
col_insert_id,
col_row_id,
max_row_id,
columns,
size_bytes,
} = &mut *inner;
// append time to primary column and update time range appropriately
if let (Some(last_time), Some(last_row_id)) = (col_time.back(), col_row_id.back()) {
// NOTE: Within a single timestamp, we use the Row ID as tie-breaker
*is_sorted &= (*last_time, *last_row_id) <= (time.as_i64(), row.row_id());
}
col_time.push_back(time.as_i64());
*time_range =
ResolvedTimeRange::new(time_range.min().min(time), time_range.max().max(time));
size_bytes_added += time.as_i64().total_size_bytes();
// update all control columns
if let Some(insert_id) = insert_id {
col_insert_id.push_back(insert_id);
size_bytes_added += insert_id.total_size_bytes();
}
col_row_id.push_back(row.row_id());
*max_row_id = RowId::max(*max_row_id, row.row_id());
size_bytes_added += row.row_id().total_size_bytes();
// append components to their respective columns (2-way merge)
// 2-way merge, step 1: left-to-right
for cell in row.cells().iter() {
let component_name = cell.component_name();
let column = columns.entry(component_name).or_insert_with(|| {
let column = DataCellColumn::empty(col_time.len().saturating_sub(1));
size_bytes_added += component_name.total_size_bytes();
size_bytes_added += column.total_size_bytes();
column
});
size_bytes_added += cell.total_size_bytes();
column.0.push_back(Some(cell.clone() /* shallow */));
}
// 2-way merge, step 2: right-to-left
//
// fill unimpacted columns with null values
for (component_name, column) in &mut *columns {
if !components.contains(component_name) {
let none_cell: Option<DataCell> = None;
size_bytes_added += none_cell.total_size_bytes();
column.0.push_back(none_cell);
}
}
*size_bytes += size_bytes_added;
#[cfg(debug_assertions)]
{
drop(inner);
self.sanity_check().unwrap();
}
size_bytes_added
}
/// Splits the bucket into two, potentially uneven parts.
///
/// On success..:
/// - the first part is split in place (i.e. modifies `self`),
/// - the second part is returned as a new bucket,
/// - and the minimal bound of that new bucket is returned as a `TimeInt`, for indexing.
///
/// Returns `None` on failure, i.e. if the bucket cannot be split any further, which can
/// happen either because the bucket is too small to begin with, or because it only contains
/// a single timepoint.
///
/// # Unsplittable buckets
///
/// The datastore and query path operate under the general assumption that _all of the data_
/// for a given timepoint will reside in _one and only one_ bucket.
/// This function makes sure to uphold that restriction, which sometimes means splitting the
/// bucket into two uneven parts, or even not splitting it at all.
///
/// Run the following command to display a visualization of the store's internal
/// datastructures and better understand how everything fits together:
/// ```text
/// cargo test -p re_data_store -- --nocapture datastore_internal_repr
/// ```
fn split(&self) -> Option<(TimeInt, Self)> {
let Self { timeline, inner } = self;
let mut inner1 = inner.write();
if inner1.col_time.len() < 2 {
return None; // early exit: can't split the unsplittable
}
if inner1.time_range.abs_length() == 0 {
// The entire bucket contains only one timepoint, thus it's impossible to find
// a split index to begin with.
return None;
}
re_tracing::profile_function!();
inner1.sort();
let IndexedBucketInner {
is_sorted: _,
time_range: time_range1,
col_time: col_time1,
col_insert_id: col_insert_id1,
col_row_id: col_row_id1,
max_row_id: max_row_id1,
columns: columns1,
size_bytes: _, // NOTE: recomputed below
} = &mut *inner1;
let timeline = *timeline;
// Used in debug builds to assert that we've left everything in a sane state.
let _num_rows = col_time1.len();
let (min2, bucket2) = {
col_time1.make_contiguous();
let (times1, &[]) = col_time1.as_slices() else {
unreachable!();
};
let split_idx = find_split_index(times1).expect("must be splittable at this point");
let (time_range2, col_time2, col_insert_id2, col_row_id2) = {
re_tracing::profile_scope!("control");
// update everything _in place_!
(
split_time_range_off(split_idx, times1, time_range1),
col_time1.split_off_or_default(split_idx),
col_insert_id1.split_off_or_default(split_idx),
col_row_id1.split_off_or_default(split_idx),
)
};
// NOTE: We _have_ to fullscan here: the bucket is sorted by `(Time, RowId)`, there
// could very well be a greater lurking in a lesser entry.
*max_row_id1 = col_row_id1.iter().max().copied().unwrap_or(RowId::ZERO);
// this updates `columns1` in-place!
let columns2: IntMap<_, _> = {
re_tracing::profile_scope!("data");
columns1
.iter_mut()
.map(|(name, column1)| {
if split_idx >= column1.len() {
return (*name, DataCellColumn(Default::default()));
}
// this updates `column1` in-place!
let column2 = DataCellColumn(column1.split_off(split_idx));
(*name, column2)
})
.collect()
};
let inner2 = {
// NOTE: We _have_ to fullscan here: the bucket is sorted by `(Time, RowId)`, there
// could very well be a greater lurking in a lesser entry.
let max_row_id2 = col_row_id2.iter().max().copied().unwrap_or(RowId::ZERO);
let mut inner2 = IndexedBucketInner {
is_sorted: true,
time_range: time_range2,
col_time: col_time2,
col_insert_id: col_insert_id2,
col_row_id: col_row_id2,
max_row_id: max_row_id2,
columns: columns2,
size_bytes: 0, // NOTE: computed below
};
inner2.compute_size_bytes();
inner2
};
let bucket2 = Self {
timeline,
inner: RwLock::new(inner2),
};
(time_range2.min(), bucket2)
};
inner1.compute_size_bytes();
// sanity checks
#[cfg(debug_assertions)]
{
drop(inner1); // sanity checking will grab the lock!
self.sanity_check().unwrap();
bucket2.sanity_check().unwrap();
let num_rows1 = self.num_rows() as i64;
let num_rows2 = bucket2.num_rows() as i64;
debug_assert_eq!(
_num_rows as i64,
num_rows1 + num_rows2,
"expected both buckets to sum up to the length of the original bucket"
);
}
Some((min2, bucket2))
}
}
/// Finds an optimal split point for the given time index, or `None` if all entries in the index
/// are identical, making it unsplittable.
///
/// The returned index is _exclusive_: `[0, split_idx)` + `[split_idx; len)`.
///
/// # Panics
///
/// This function expects `times` to be sorted!
/// In debug builds, it will panic if that's not the case.
fn find_split_index(times: &[i64]) -> Option<usize> {
debug_assert!(
times.windows(2).all(|t| t[0] <= t[1]),
"time index must be sorted before splitting!"
);
if times.first() == times.last() {
return None; // early exit: unsplittable
}
re_tracing::profile_function!();
// This can never be lesser than 1 as we never split buckets smaller than 2 entries.
let halfway_idx = times.len() / 2;
let target = times[halfway_idx];
// Are we about to split in the middle of a continuous run? Hop backwards to figure it out.
let split_idx1 = Some(times[..halfway_idx].partition_point(|&t| t < target)).filter(|&i| i > 0);
// Are we about to split in the middle of a continuous run? Hop forwards to figure it out.
let split_idx2 = Some(times[halfway_idx..].partition_point(|&t| t <= target))
.map(|t| t + halfway_idx) // we skipped that many entries!
.filter(|&t| t < times.len());
// Are we in the middle of a backwards continuous run? a forwards continuous run? both?
match (split_idx1, split_idx2) {
// Unsplittable, which cannot happen as we already early-exit earlier.
#[cfg(not(debug_assertions))]
(None, None) => None,
#[cfg(debug_assertions)]
(None, None) => unreachable!(),
// Backwards run, let's use the first split index.
(Some(split_idx1), None) => Some(split_idx1),
// Forwards run, let's use the second split index.
(None, Some(split_idx2)) => Some(split_idx2),
// The run goes both backwards and forwards from the half point: use the split index
// that's the closest to halfway.
(Some(split_idx1), Some(split_idx2)) => {
if halfway_idx.abs_diff(split_idx1) < halfway_idx.abs_diff(split_idx2) {
split_idx1
} else {
split_idx2
}
.into()
}
}
}
#[test]
fn test_find_split_index() {
let test_cases = [
(vec![1, 1], None),
//
(vec![1, 1, 1], None),
(vec![1, 1, 2], Some(2)),
(vec![0, 1, 1], Some(1)),
//
(vec![1, 1, 1, 1], None),
(vec![1, 1, 1, 2], Some(3)),
(vec![0, 1, 1, 1], Some(1)),
//
(vec![1, 1, 1, 1, 1], None),
(vec![1, 1, 1, 1, 2], Some(4)),
(vec![0, 1, 1, 1, 1], Some(1)),
(vec![0, 1, 1, 1, 2], Some(1)), // first one wins when equal distances
(vec![0, 1, 1, 2, 2], Some(3)), // second one is closer
(vec![0, 0, 1, 2, 2], Some(2)), // first one wins when equal distances
(vec![0, 0, 2, 2, 2], Some(2)), // second one is closer
(vec![0, 0, 0, 2, 2], Some(3)), // first one is closer
];
for (times, expected) in test_cases {
let got = find_split_index(×);
assert_eq!(expected, got);
}
}
/// Given a time index and a desired split index, splits off the given time range in place,
/// and returns a new time range corresponding to the second part.
///
/// The split index is exclusive: everything up to `split_idx` (excluded) will end up in the
/// first split.
///
/// The two resulting time range halves are guaranteed to never overlap.
fn split_time_range_off(
split_idx: usize,
times1: &[i64],
time_range1: &mut ResolvedTimeRange,
) -> ResolvedTimeRange {
let time_range2 =
ResolvedTimeRange::new(TimeInt::new_temporal(times1[split_idx]), time_range1.max());
// This can never fail (underflow or OOB) because we never split buckets smaller than 2
// entries.
time_range1.set_max(times1[split_idx - 1]);
debug_assert!(
time_range1.max().as_i64() < time_range2.min().as_i64(),
"split resulted in overlapping time ranges: {} <-> {}\n{:#?}",
time_range1.max().as_i64(),
time_range2.min().as_i64(),
(&time_range1, &time_range2),
);
time_range2
}