1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
//! Composable structures to handle writing an image.


use std::fmt::Debug;
use std::io::Seek;
use std::iter::Peekable;
use std::ops::Not;
use rayon_core::{ThreadPool, ThreadPoolBuildError};

use smallvec::alloc::collections::BTreeMap;

use crate::block::UncompressedBlock;
use crate::block::chunk::{Chunk};
use crate::compression::Compression;
use crate::error::{Error, Result, UnitResult, usize_to_u64};
use crate::io::{Data, Tracking, Write};
use crate::meta::{Headers, MetaData, OffsetTables};
use crate::meta::attribute::LineOrder;

/// Write an exr file by writing one chunk after another in a closure.
/// In the closure, you are provided a chunk writer, which should be used to write all the chunks.
/// Assumes the your write destination is buffered.
pub fn write_chunks_with<W: Write + Seek>(
    buffered_write: W, headers: Headers, pedantic: bool,
    write_chunks: impl FnOnce(MetaData, &mut ChunkWriter<W>) -> UnitResult
) -> UnitResult {
    // this closure approach ensures that after writing all chunks, the file is always completed and checked and flushed
    let (meta, mut writer) = ChunkWriter::new_for_buffered(buffered_write, headers, pedantic)?;
    write_chunks(meta, &mut writer)?;
    writer.complete_meta_data()
}

/// Can consume compressed pixel chunks, writing them a file.
/// Use `sequential_blocks_compressor` or `parallel_blocks_compressor` to compress your data,
/// or use `compress_all_blocks_sequential` or `compress_all_blocks_parallel`.
/// Use `on_progress` to obtain a new writer
/// that triggers a callback for each block.
// #[must_use]
#[derive(Debug)]
#[must_use]
pub struct ChunkWriter<W> {
    header_count: usize,
    byte_writer: Tracking<W>,
    chunk_indices_byte_location: std::ops::Range<usize>,
    chunk_indices_increasing_y: OffsetTables,
    chunk_count: usize, // TODO compose?
}

/// A new writer that triggers a callback
/// for each block written to the inner writer.
#[derive(Debug)]
#[must_use]
pub struct OnProgressChunkWriter<'w, W, F> {
    chunk_writer: &'w mut W,
    written_chunks: usize,
    on_progress: F,
}

/// Write chunks to a byte destination.
/// Then write each chunk with `writer.write_chunk(chunk)`.
pub trait ChunksWriter: Sized {

    /// The total number of chunks that the complete file will contain.
    fn total_chunks_count(&self) -> usize;

    /// Any more calls will result in an error and have no effect.
    /// If writing results in an error, the file and the writer
    /// may remain in an invalid state and should not be used further.
    /// Errors when the chunk at this index was already written.
    fn write_chunk(&mut self, index_in_header_increasing_y: usize, chunk: Chunk) -> UnitResult;

    /// Obtain a new writer that calls the specified closure for each block that is written to this writer.
    fn on_progress<F>(&mut self, on_progress: F) -> OnProgressChunkWriter<'_, Self, F> where F: FnMut(f64) {
        OnProgressChunkWriter { chunk_writer: self, written_chunks: 0, on_progress }
    }

    /// Obtain a new writer that can compress blocks to chunks, which are then passed to this writer.
    fn sequential_blocks_compressor<'w>(&'w mut self, meta: &'w MetaData) -> SequentialBlocksCompressor<'w, Self> {
        SequentialBlocksCompressor::new(meta, self)
    }

    /// Obtain a new writer that can compress blocks to chunks on multiple threads, which are then passed to this writer.
    /// Returns none if the sequential compressor should be used instead (thread pool creation failure or too large performance overhead).
    fn parallel_blocks_compressor<'w>(&'w mut self, meta: &'w MetaData) -> Option<ParallelBlocksCompressor<'w, Self>> {
        ParallelBlocksCompressor::new(meta, self)
    }

    /// Compresses all blocks to the file.
    /// The index of the block must be in increasing line order within the header.
    /// Obtain iterator with `MetaData::collect_ordered_blocks(...)` or similar methods.
    fn compress_all_blocks_sequential(mut self, meta: &MetaData, blocks: impl Iterator<Item=(usize, UncompressedBlock)>) -> UnitResult {
        let mut writer = self.sequential_blocks_compressor(meta);

        // TODO check block order if line order is not unspecified!
        for (index_in_header_increasing_y, block) in blocks {
            writer.compress_block(index_in_header_increasing_y, block)?;
        }

        // TODO debug_assert_eq!(self.is_complete());
        Ok(())
    }

    /// Compresses all blocks to the file.
    /// The index of the block must be in increasing line order within the header.
    /// Obtain iterator with `MetaData::collect_ordered_blocks(...)` or similar methods.
    /// Will fallback to sequential processing where threads are not available, or where it would not speed up the process.
    fn compress_all_blocks_parallel(mut self, meta: &MetaData, blocks: impl Iterator<Item=(usize, UncompressedBlock)>) -> UnitResult {
        let mut parallel_writer = match self.parallel_blocks_compressor(meta) {
            None => return self.compress_all_blocks_sequential(meta, blocks),
            Some(writer) => writer,
        };

        // TODO check block order if line order is not unspecified!
        for (index_in_header_increasing_y, block) in blocks {
            parallel_writer.add_block_to_compression_queue(index_in_header_increasing_y, block)?;
        }

        // TODO debug_assert_eq!(self.is_complete());
        Ok(())
    }
}


impl<W> ChunksWriter for ChunkWriter<W> where W: Write + Seek {

    /// The total number of chunks that the complete file will contain.
    fn total_chunks_count(&self) -> usize { self.chunk_count }

    /// Any more calls will result in an error and have no effect.
    /// If writing results in an error, the file and the writer
    /// may remain in an invalid state and should not be used further.
    /// Errors when the chunk at this index was already written.
    fn write_chunk(&mut self, index_in_header_increasing_y: usize, chunk: Chunk) -> UnitResult {
        let header_chunk_indices = &mut self.chunk_indices_increasing_y[chunk.layer_index];

        if index_in_header_increasing_y >= header_chunk_indices.len() {
            return Err(Error::invalid("too large chunk index"));
        }

        let chunk_index_slot = &mut header_chunk_indices[index_in_header_increasing_y];
        if *chunk_index_slot != 0 {
            return Err(Error::invalid(format!("chunk at index {} is already written", index_in_header_increasing_y)));
        }

        *chunk_index_slot = usize_to_u64(self.byte_writer.byte_position());
        chunk.write(&mut self.byte_writer, self.header_count)?;
        Ok(())
    }
}

impl<W> ChunkWriter<W> where W: Write + Seek {
    // -- the following functions are private, because they must be called in a strict order --

    /// Writes the meta data and zeroed offset tables as a placeholder.
    fn new_for_buffered(buffered_byte_writer: W, headers: Headers, pedantic: bool) -> Result<(MetaData, Self)> {
        let mut write = Tracking::new(buffered_byte_writer);
        let requirements = MetaData::write_validating_to_buffered(&mut write, headers.as_slice(), pedantic)?;

        // TODO: use increasing line order where possible, but this requires us to know whether we want to be parallel right now
        /*// if non-parallel compression, we always use increasing order anyways
        if !parallel || !has_compression {
            for header in &mut headers {
                if header.line_order == LineOrder::Unspecified {
                    header.line_order = LineOrder::Increasing;
                }
            }
        }*/

        let offset_table_size: usize = headers.iter().map(|header| header.chunk_count).sum();

        let offset_table_start_byte = write.byte_position();
        let offset_table_end_byte = write.byte_position() + offset_table_size * u64::BYTE_SIZE;

        // skip offset tables, filling with 0, will be updated after the last chunk has been written
        write.seek_write_to(offset_table_end_byte)?;

        let header_count = headers.len();
        let chunk_indices_increasing_y = headers.iter()
            .map(|header| vec![0_u64; header.chunk_count]).collect();

        let meta_data = MetaData { requirements, headers };

        Ok((meta_data, ChunkWriter {
            header_count,
            byte_writer: write,
            chunk_count: offset_table_size,
            chunk_indices_byte_location: offset_table_start_byte .. offset_table_end_byte,
            chunk_indices_increasing_y,
        }))
    }

    /// Seek back to the meta data, write offset tables, and flush the byte writer.
    /// Leaves the writer seeked to the middle of the file.
    fn complete_meta_data(mut self) -> UnitResult {
        if self.chunk_indices_increasing_y.iter().flatten().any(|&index| index == 0) {
            return Err(Error::invalid("some chunks are not written yet"))
        }

        // write all offset tables
        debug_assert_ne!(self.byte_writer.byte_position(), self.chunk_indices_byte_location.end, "offset table has already been updated");
        self.byte_writer.seek_write_to(self.chunk_indices_byte_location.start)?;

        for table in self.chunk_indices_increasing_y {
            u64::write_slice(&mut self.byte_writer, table.as_slice())?;
        }

        self.byte_writer.flush()?; // make sure we catch all (possibly delayed) io errors before returning
        Ok(())
    }

}


impl<'w, W, F> ChunksWriter for OnProgressChunkWriter<'w, W, F> where W: 'w + ChunksWriter, F: FnMut(f64) {
    fn total_chunks_count(&self) -> usize {
        self.chunk_writer.total_chunks_count()
    }

    fn write_chunk(&mut self, index_in_header_increasing_y: usize, chunk: Chunk) -> UnitResult {
        let total_chunks = self.total_chunks_count();
        let on_progress = &mut self.on_progress;

        // guarantee on_progress being called with 0 once
        if self.written_chunks == 0 { on_progress(0.0); }

        self.chunk_writer.write_chunk(index_in_header_increasing_y, chunk)?;

        self.written_chunks += 1;

        on_progress({
            // guarantee finishing with progress 1.0 for last block at least once, float division might slightly differ from 1.0
            if self.written_chunks == total_chunks { 1.0 }
            else { self.written_chunks as f64 / total_chunks as f64 }
        });

        Ok(())
    }
}


/// Write blocks that appear in any order and reorder them before writing.
#[derive(Debug)]
#[must_use]
pub struct SortedBlocksWriter<'w, W> {
    chunk_writer: &'w mut W,
    pending_chunks: BTreeMap<usize, (usize, Chunk)>,
    unwritten_chunk_indices: Peekable<std::ops::Range<usize>>,
    requires_sorting: bool, // using this instead of Option, because of borrowing
}


impl<'w, W> SortedBlocksWriter<'w, W> where W: ChunksWriter {

    /// New sorting writer. Returns `None` if sorting is not required.
    pub fn new(meta_data: &MetaData, chunk_writer: &'w mut W) -> SortedBlocksWriter<'w, W> {
        let requires_sorting = meta_data.headers.iter()
            .any(|header| header.line_order != LineOrder::Unspecified);

        let total_chunk_count = chunk_writer.total_chunks_count();

        SortedBlocksWriter {
            pending_chunks: BTreeMap::new(),
            unwritten_chunk_indices: (0 .. total_chunk_count).peekable(),
            requires_sorting,
            chunk_writer
        }
    }

    /// Write the chunk or stash it. In the closure, write all chunks that can be written now.
    pub fn write_or_stash_chunk(&mut self, chunk_index_in_file: usize, chunk_y_index: usize, chunk: Chunk) -> UnitResult {
        if self.requires_sorting.not() {
            return self.chunk_writer.write_chunk(chunk_y_index, chunk);
        }

        // write this chunk now if possible
        if self.unwritten_chunk_indices.peek() == Some(&chunk_index_in_file){
            self.chunk_writer.write_chunk(chunk_y_index, chunk)?;
            self.unwritten_chunk_indices.next().expect("peeked chunk index is missing");

            // write all pending blocks that are immediate successors of this block
            while let Some((next_chunk_y_index, next_chunk)) = self
                .unwritten_chunk_indices.peek().cloned()
                .and_then(|id| self.pending_chunks.remove(&id))
            {
                self.chunk_writer.write_chunk(next_chunk_y_index, next_chunk)?;
                self.unwritten_chunk_indices.next().expect("peeked chunk index is missing");
            }
        }

        else {
            // the argument block is not to be written now,
            // and all the pending blocks are not next up either,
            // so just stash this block
            self.pending_chunks.insert(chunk_index_in_file, (chunk_y_index, chunk));
        }

        Ok(())
    }

    /// Where the chunks will be written to.
    pub fn inner_chunks_writer(&self) -> &W {
        &self.chunk_writer
    }
}



/// Compress blocks to a chunk writer in this thread.
#[derive(Debug)]
#[must_use]
pub struct SequentialBlocksCompressor<'w, W> {
    meta: &'w MetaData,
    chunks_writer: &'w mut W,
}

impl<'w, W> SequentialBlocksCompressor<'w, W> where W: 'w + ChunksWriter {

    /// New blocks writer.
    pub fn new(meta: &'w MetaData, chunks_writer: &'w mut W) -> Self { Self { meta, chunks_writer, } }

    /// This is where the compressed blocks are written to.
    pub fn inner_chunks_writer(&'w self) -> &'w W { self.chunks_writer }

    /// Compress a single block immediately. The index of the block must be in increasing line order.
    pub fn compress_block(&mut self, index_in_header_increasing_y: usize, block: UncompressedBlock) -> UnitResult {
        self.chunks_writer.write_chunk(
            index_in_header_increasing_y,
            block.compress_to_chunk(&self.meta.headers)?
        )
    }
}

/// Compress blocks to a chunk writer with multiple threads.
#[derive(Debug)]
#[must_use]
pub struct ParallelBlocksCompressor<'w, W> {
    meta: &'w MetaData,
    sorted_writer: SortedBlocksWriter<'w, W>,

    sender: flume::Sender<Result<(usize, usize, Chunk)>>,
    receiver: flume::Receiver<Result<(usize, usize, Chunk)>>,
    pool: rayon_core::ThreadPool,

    currently_compressing_count: usize,
    written_chunk_count: usize, // used to check for last chunk
    max_threads: usize,
    next_incoming_chunk_index: usize, // used to remember original chunk order
}

impl<'w, W> ParallelBlocksCompressor<'w, W> where W: 'w + ChunksWriter {

    /// New blocks writer. Returns none if sequential compression should be used.
    /// Use `new_with_thread_pool` to customize the threadpool.
    pub fn new(meta: &'w MetaData, chunks_writer: &'w mut W) -> Option<Self> {
        Self::new_with_thread_pool(meta, chunks_writer, ||{
            rayon_core::ThreadPoolBuilder::new()
                .thread_name(|index| format!("OpenEXR Block Compressor Thread #{}", index))
                .build()
        })
    }

    /// New blocks writer. Returns none if sequential compression should be used.
    pub fn new_with_thread_pool<CreatePool>(
        meta: &'w MetaData, chunks_writer: &'w mut W, try_create_thread_pool: CreatePool)
        -> Option<Self>
        where CreatePool: FnOnce() -> std::result::Result<ThreadPool, ThreadPoolBuildError>
    {
        if meta.headers.iter().all(|head|head.compression == Compression::Uncompressed) {
            return None;
        }

        // in case thread pool creation fails (for example on WASM currently),
        // we revert to sequential compression
        let pool = match try_create_thread_pool() {
            Ok(pool) => pool,

            // TODO print warning?
            Err(_) => return None,
        };

        let max_threads = pool.current_num_threads().max(1).min(chunks_writer.total_chunks_count()) + 2; // ca one block for each thread at all times
        let (send, recv) = flume::unbounded(); // TODO bounded channel simplifies logic?

        Some(Self {
            sorted_writer: SortedBlocksWriter::new(meta, chunks_writer),
            next_incoming_chunk_index: 0,
            currently_compressing_count: 0,
            written_chunk_count: 0,
            sender: send,
            receiver: recv,
            max_threads,
            pool,
            meta,
        })
    }

    /// This is where the compressed blocks are written to.
    pub fn inner_chunks_writer(&'w self) -> &'w W { self.sorted_writer.inner_chunks_writer() }

    // private, as may underflow counter in release mode
    fn write_next_queued_chunk(&mut self) -> UnitResult {
        debug_assert!(self.currently_compressing_count > 0, "cannot wait for chunks as there are none left");

        let some_compressed_chunk = self.receiver.recv()
            .expect("cannot receive compressed block");

        self.currently_compressing_count -= 1;
        let (chunk_file_index, chunk_y_index, chunk) = some_compressed_chunk?;
        self.sorted_writer.write_or_stash_chunk(chunk_file_index, chunk_y_index, chunk)?;

        self.written_chunk_count += 1;
        Ok(())
    }

    /// Wait until all currently compressing chunks in the compressor have been written.
    pub fn write_all_queued_chunks(&mut self) -> UnitResult {
        while self.currently_compressing_count > 0 {
            self.write_next_queued_chunk()?;
        }

        debug_assert_eq!(self.currently_compressing_count, 0, "counter does not match block count");
        Ok(())
    }

    /// Add a single block to the compressor queue. The index of the block must be in increasing line order.
    /// When calling this function for the last block, this method waits until all the blocks have been written.
    /// This only works when you write as many blocks as the image expects, otherwise you can use `wait_for_all_remaining_chunks`.
    /// Waits for a block from the queue to be written, if the queue already has enough items.
    pub fn add_block_to_compression_queue(&mut self, index_in_header_increasing_y: usize, block: UncompressedBlock) -> UnitResult {

        // if pipe is full, block to wait for a slot to free up
        if self.currently_compressing_count >= self.max_threads {
            self.write_next_queued_chunk()?;
        }

        // add the argument chunk to the compression queueue
        let index_in_file = self.next_incoming_chunk_index;
        let sender = self.sender.clone();
        let meta = self.meta.clone();

        self.pool.spawn(move ||{
            let compressed_or_err = block.compress_to_chunk(&meta.headers);

            // by now, decompressing could have failed in another thread.
            // the error is then already handled, so we simply
            // don't send the decompressed block and do nothing
            let _ = sender.send(compressed_or_err.map(move |compressed| (index_in_file, index_in_header_increasing_y, compressed)));
        });

        self.currently_compressing_count += 1;
        self.next_incoming_chunk_index += 1;

        // if this is the last chunk, wait for all chunks to complete before returning
        if self.written_chunk_count + self.currently_compressing_count == self.inner_chunks_writer().total_chunks_count() {
            self.write_all_queued_chunks()?;
            debug_assert_eq!(
                self.written_chunk_count, self.inner_chunks_writer().total_chunks_count(),
                "written chunk count mismatch"
            );
        }


        Ok(())
    }
}