1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
use std::{
cell::RefCell,
collections::VecDeque,
ops::Range,
sync::{Arc, OnceLock},
};
use nohash_hasher::IntMap;
use parking_lot::{MappedRwLockReadGuard, RwLock, RwLockReadGuard, RwLockWriteGuard};
use re_data_store::RangeQuery;
use re_log_types::{ResolvedTimeRange, RowId, TimeInt};
use re_types_core::{Component, ComponentName, DeserializationError, SizeBytes};
use crate::{
ErasedFlatVecDeque, FlatVecDeque, LatestAtComponentResults, Promise, PromiseResolver,
PromiseResult,
};
// ---
/// Results for a range query.
///
/// The data is both deserialized and resolved/converted.
///
/// Use [`RangeResults::get`], [`RangeResults::get_required`] and
/// [`RangeResults::get_or_empty`] in order to access the results for each individual component.
#[derive(Debug)]
pub struct RangeResults {
pub query: RangeQuery,
pub components: IntMap<ComponentName, RangeComponentResults>,
}
impl RangeResults {
#[inline]
pub(crate) fn new(query: RangeQuery) -> Self {
Self {
query,
components: Default::default(),
}
}
#[inline]
pub fn contains(&self, component_name: impl Into<ComponentName>) -> bool {
self.components.contains_key(&component_name.into())
}
/// Returns the [`RangeComponentResults`] for the specified [`Component`].
#[inline]
pub fn get(&self, component_name: impl Into<ComponentName>) -> Option<&RangeComponentResults> {
self.components.get(&component_name.into())
}
/// Returns the [`RangeComponentResults`] for the specified [`Component`].
///
/// Returns an error if the component is not present.
#[inline]
pub fn get_required(
&self,
component_name: impl Into<ComponentName>,
) -> crate::Result<&RangeComponentResults> {
let component_name = component_name.into();
if let Some(component) = self.components.get(&component_name) {
Ok(component)
} else {
Err(DeserializationError::MissingComponent {
component: component_name,
backtrace: ::backtrace::Backtrace::new_unresolved(),
}
.into())
}
}
/// Returns the [`RangeComponentResults`] for the specified [`Component`].
///
/// Returns empty results if the component is not present.
#[inline]
pub fn get_or_empty(&self, component_name: impl Into<ComponentName>) -> &RangeComponentResults {
let component_name = component_name.into();
if let Some(component) = self.components.get(&component_name) {
component
} else {
RangeComponentResults::empty()
}
}
}
impl RangeResults {
#[doc(hidden)]
#[inline]
pub fn add(&mut self, component_name: ComponentName, cached: RangeComponentResults) {
self.components.insert(component_name, cached);
}
}
// ---
thread_local! {
/// Keeps track of reentrancy counts for the current thread.
///
/// Used to detect and prevent potential deadlocks when using the cached APIs in work-stealing
/// environments such as Rayon.
static REENTERING: RefCell<u32> = const { RefCell::new(0) };
}
/// Lazily cached results for a particular component when using a cached range query.
#[derive(Debug)]
pub struct RangeComponentResults {
/// The [`ResolvedTimeRange`] of the query that was used in order to retrieve these results in the
/// first place.
///
/// The "original" copy in the cache just stores [`ResolvedTimeRange::EMPTY`]. It's meaningless.
pub(crate) time_range: ResolvedTimeRange,
pub(crate) inner: Arc<RwLock<RangeComponentResultsInner>>,
}
impl RangeComponentResults {
/// Clones the results while making sure to stamp them with the [`ResolvedTimeRange`] of the associated query.
#[inline]
pub(crate) fn clone_at(&self, time_range: ResolvedTimeRange) -> Self {
Self {
time_range,
inner: self.inner.clone(),
}
}
}
impl RangeComponentResults {
#[inline]
pub fn empty() -> &'static Self {
static EMPTY: OnceLock<RangeComponentResults> = OnceLock::new();
EMPTY.get_or_init(RangeComponentResults::default)
}
}
impl re_types_core::SizeBytes for RangeComponentResults {
#[inline]
fn heap_size_bytes(&self) -> u64 {
// NOTE: it's all on the heap past this point.
self.inner.read_recursive().total_size_bytes()
}
}
impl Default for RangeComponentResults {
#[inline]
fn default() -> Self {
Self {
time_range: ResolvedTimeRange::EMPTY,
inner: Arc::new(RwLock::new(RangeComponentResultsInner::empty())),
}
}
}
impl std::ops::Deref for RangeComponentResults {
type Target = RwLock<RangeComponentResultsInner>;
#[inline]
fn deref(&self) -> &Self::Target {
&self.inner
}
}
/// Helper datastructure to make it possible to convert latest-at results into ranged results.
#[derive(Debug)]
enum Indices<'a> {
Owned(VecDeque<(TimeInt, RowId)>),
Cached(MappedRwLockReadGuard<'a, VecDeque<(TimeInt, RowId)>>),
}
impl<'a> std::ops::Deref for Indices<'a> {
type Target = VecDeque<(TimeInt, RowId)>;
#[inline]
fn deref(&self) -> &Self::Target {
match self {
Indices::Owned(data) => data,
Indices::Cached(data) => data,
}
}
}
/// Helper datastructure to make it possible to convert latest-at results into ranged results.
enum Data<'a, T> {
Owned(Arc<dyn ErasedFlatVecDeque + Send + Sync>),
Cached(MappedRwLockReadGuard<'a, FlatVecDeque<T>>),
}
impl<'a, T: 'static> std::ops::Deref for Data<'a, T> {
type Target = FlatVecDeque<T>;
#[inline]
fn deref(&self) -> &Self::Target {
match self {
Data::Owned(data) => {
// Unwrap: only way to instantiate a `Data` is via the `From` impl below which we
// fully control.
data.as_any().downcast_ref().unwrap()
}
Data::Cached(data) => data,
}
}
}
pub struct RangeData<'a, T> {
// NOTE: Options so we can represent an empty result without having to somehow conjure a mutex
// guard out of thin air.
//
// TODO(Amanieu/parking_lot#289): we need two distinct mapped guards because it's
// impossible to return an owned type in a `parking_lot` guard.
// See <https://github.com/Amanieu/parking_lot/issues/289#issuecomment-1827545967>.
// indices: Option<MappedRwLockReadGuard<'a, VecDeque<(TimeInt, RowId)>>>,
indices: Option<Indices<'a>>,
data: Option<Data<'a, T>>,
time_range: ResolvedTimeRange,
front_status: PromiseResult<()>,
back_status: PromiseResult<()>,
/// Keeps track of reentrancy counts for the current thread.
///
/// Used to detect and prevent potential deadlocks when using the cached APIs in work-stealing
/// environments such as Rayon.
reentering: &'static std::thread::LocalKey<RefCell<u32>>,
}
impl<'a, C: Component> RangeData<'a, C> {
/// Useful to abstract over latest-at and ranged results.
///
/// Use `reindexed` override the index of the data, if needed.
#[inline]
pub fn from_latest_at(
resolver: &PromiseResolver,
results: &'a LatestAtComponentResults,
reindexed: Option<(TimeInt, RowId)>,
) -> Self {
let LatestAtComponentResults {
index,
promise: _,
cached_dense,
} = results;
let status = results.to_dense::<C>(resolver).map(|_| ());
let index = reindexed.unwrap_or(*index);
Self {
indices: Some(Indices::Owned(vec![index].into())),
data: cached_dense.get().map(|data| Data::Owned(Arc::clone(data))),
time_range: ResolvedTimeRange::new(index.0, index.0),
front_status: status.clone(),
back_status: status,
reentering: &REENTERING,
}
}
}
impl<'a, T> Drop for RangeData<'a, T> {
#[inline]
fn drop(&mut self) {
self.reentering
.with_borrow_mut(|reentering| *reentering = reentering.saturating_sub(1));
}
}
impl<'a, T: 'static> RangeData<'a, T> {
/// Returns the current status on both ends of the range.
///
/// E.g. it is possible that the front-side of the range is still waiting for pending data while
/// the back-side has been fully loaded.
#[inline]
pub fn status(&self) -> (PromiseResult<()>, PromiseResult<()>) {
(self.front_status.clone(), self.back_status.clone())
}
#[inline]
pub fn range_indices(
&self,
entry_range: Range<usize>,
) -> impl Iterator<Item = &(TimeInt, RowId)> {
let indices = match self.indices.as_ref() {
Some(indices) => itertools::Either::Left(indices.range(entry_range)),
None => itertools::Either::Right(std::iter::empty()),
};
indices
}
#[inline]
pub fn range_data(&self, entry_range: Range<usize>) -> impl Iterator<Item = &[T]> {
match self.data.as_ref() {
Some(indices) => itertools::Either::Left(indices.range(entry_range)),
None => itertools::Either::Right(std::iter::empty()),
}
}
/// Range both the indices and data by zipping them together.
///
/// Useful for time-based joins (`range_zip`).
#[inline]
pub fn range_indexed(&self) -> impl Iterator<Item = (&(TimeInt, RowId), &[T])> {
let entry_range = self.entry_range();
itertools::izip!(
self.range_indices(entry_range.clone()),
self.range_data(entry_range)
)
}
/// Returns the index range that corresponds to the specified `time_range`.
///
/// Use the returned range with one of the range iteration methods:
/// - [`Self::range_indices`]
/// - [`Self::range_data`]
/// - [`Self::range_indexed`]
///
/// Make sure that the bucket hasn't been modified in-between!
///
/// This is `O(2*log(n))`, so make sure to clone the returned range rather than calling this
/// multiple times.
#[inline]
pub fn entry_range(&self) -> Range<usize> {
let Some(indices) = self.indices.as_ref() else {
return 0..0;
};
// If there's any static data cached, make sure to look for it explicitly.
//
// Remember: `TimeRange`s can never contain `TimeInt::STATIC`.
let static_override = if matches!(indices.front(), Some((TimeInt::STATIC, _))) {
TimeInt::STATIC
} else {
TimeInt::MAX
};
let start_index = indices.partition_point(|(data_time, _)| {
*data_time < TimeInt::min(self.time_range.min(), static_override)
});
let end_index = indices.partition_point(|(data_time, _)| {
*data_time <= TimeInt::min(self.time_range.max(), static_override)
});
start_index..end_index
}
}
impl RangeComponentResults {
/// Returns the component data as a dense vector.
///
/// Returns an error if the component is missing or cannot be deserialized.
///
/// Use [`PromiseResult::flatten`] to merge the results of resolving the promise and of
/// deserializing the data into a single one, if you don't need the extra flexibility.
#[inline]
pub fn to_dense<C: Component>(&self, resolver: &PromiseResolver) -> RangeData<'_, C> {
// It's tracing the deserialization of an entire range query at once -- it's fine.
re_tracing::profile_function!();
// --- Step 1: try and upsert pending data (write lock) ---
REENTERING.with_borrow_mut(|reentering| *reentering = reentering.saturating_add(1));
// Manufactured empty result.
if self.time_range == ResolvedTimeRange::EMPTY {
return RangeData {
indices: None,
data: None,
time_range: ResolvedTimeRange::EMPTY,
front_status: PromiseResult::Ready(()),
back_status: PromiseResult::Ready(()),
reentering: &REENTERING,
};
}
let mut results = if let Some(results) = self.inner.try_write() {
// The lock was free to grab, nothing else to worry about.
Some(results)
} else {
REENTERING.with_borrow_mut(|reentering| {
if *reentering > 1 {
// The lock is busy, and at least one of the lock holders is the current thread from a
// previous stack frame.
//
// Return `None` so that we skip straight to the read-only part of the operation.
// All the data will be there already, since the previous stack frame already
// took care of upserting it.
None
} else {
// The lock is busy, but it is not held by the current thread.
// Just block until it gets released.
Some(self.inner.write())
}
})
};
if let Some(results) = &mut results {
// NOTE: This is just a lazy initialization of the underlying deque, because we
// just now finally know the expected type!
if results.cached_dense.is_none() {
results.cached_dense = Some(Box::new(FlatVecDeque::<C>::new()));
}
if !results.promises_front.is_empty() {
re_tracing::profile_scope!("front");
let mut resolved_indices = Vec::with_capacity(results.promises_front.len());
let mut resolved_data = Vec::with_capacity(results.promises_front.len());
// Pop the promises from the end so that if we encounter one that has yet to be
// resolved, we can stop right there and know we have a contiguous range of data
// available up to that point in time.
//
// Reminder: promises are sorted in ascending index order.
while let Some(((data_time, row_id), promise)) = results.promises_front.pop() {
let data = match resolver.resolve(&promise) {
PromiseResult::Pending => {
results.front_status = (data_time, PromiseResult::Pending);
break;
}
PromiseResult::Error(err) => {
results.front_status = (data_time, PromiseResult::Error(err));
break;
}
PromiseResult::Ready(cell) => {
results.front_status = (data_time, PromiseResult::Ready(()));
match cell
.try_to_native::<C>()
.map_err(|err| DeserializationError::DataCellError(err.to_string()))
{
Ok(data) => data,
Err(err) => {
re_log::error!(%err, component=%C::name(), "data deserialization failed -- skipping");
continue;
}
}
}
};
resolved_indices.push((data_time, row_id));
resolved_data.push(data);
}
// We resolved the promises in reversed order, so reverse the results back.
resolved_indices.reverse();
resolved_data.reverse();
let results_indices = std::mem::take(&mut results.indices);
results.indices = resolved_indices
.into_iter()
.chain(results_indices)
.collect();
let resolved_data = FlatVecDeque::from_vecs(resolved_data);
// Unwraps: the deque is created when entering this function -- we know it's there
// and we know its type.
let cached_dense = results
.cached_dense
.as_mut()
.unwrap()
.as_any_mut()
.downcast_mut::<FlatVecDeque<C>>()
.unwrap();
cached_dense.push_front_deque(resolved_data);
}
if !results.promises_back.is_empty() {
re_tracing::profile_scope!("back");
let mut resolved_indices = Vec::with_capacity(results.promises_back.len());
let mut resolved_data = Vec::with_capacity(results.promises_back.len());
// Reverse the promises first so we can pop() from the back.
// It's fine, this is a one-time operation in the successful case, and it's extremely fast to do.
// See below why.
//
// Reminder: promises are sorted in ascending index order.
results.promises_back.reverse();
// Pop the promises from the end so that if we encounter one that has yet to be
// resolved, we can stop right there and know we have a contiguous range of data
// available up to that point in time.
while let Some(((data_time, index), promise)) = results.promises_back.pop() {
let data = match resolver.resolve(&promise) {
PromiseResult::Pending => {
results.back_status = (data_time, PromiseResult::Pending);
break;
}
PromiseResult::Error(err) => {
results.back_status = (data_time, PromiseResult::Error(err));
break;
}
PromiseResult::Ready(cell) => {
results.front_status = (data_time, PromiseResult::Ready(()));
match cell
.try_to_native::<C>()
.map_err(|err| DeserializationError::DataCellError(err.to_string()))
{
Ok(data) => data,
Err(err) => {
re_log::error!(%err, "data deserialization failed -- skipping");
continue;
}
}
}
};
resolved_indices.push((data_time, index));
resolved_data.push(data);
}
// Reverse our reversal.
results.promises_back.reverse();
results.indices.extend(resolved_indices);
let resolved_data = FlatVecDeque::from_vecs(resolved_data);
// Unwraps: the deque is created when entering this function -- we know it's there
// and we know its type.
let cached_dense = results
.cached_dense
.as_mut()
.unwrap()
.as_any_mut()
.downcast_mut::<FlatVecDeque<C>>()
.unwrap();
cached_dense.push_back_deque(resolved_data);
}
results.sanity_check();
}
// --- Step 2: fetch cached data (read lock) ---
let results = if let Some(results) = results {
RwLockWriteGuard::downgrade(results)
} else {
// # Multithreading semantics
//
// We need the reentrant lock because query contexts (i.e. space views) generally run on a
// work-stealing thread-pool and might swap a task on one thread with another task on the
// same thread, where both tasks happen to query the same exact data (e.g. cloned space views).
//
// See `REENTERING` comments above for more details.
self.read_recursive()
};
let front_status = {
let (results_front_time, results_front_status) = &results.front_status;
let query_front_time = self.time_range.min();
if query_front_time < *results_front_time {
// If the query covers a larger time span on its front-side than the resulting data, then
// we should forward the status of the resulting data so the caller can know why it's
// been cropped off.
results_front_status.clone()
} else {
PromiseResult::Ready(())
}
};
let back_status = {
let (results_back_time, results_back_status) = &results.back_status;
let query_back_time = self.time_range.max();
if query_back_time > *results_back_time {
// If the query covers a larger time span on its back-side than the resulting data, then
// we should forward the status of the resulting data so the caller can know why it's
// been cropped off.
results_back_status.clone()
} else {
PromiseResult::Ready(())
}
};
// # Reentrancy edge-case
//
// If we are in the reentrancy case, and if it's the first time this cache is used at all, and if
// the previous stack-frame that was holding the lock finally decided to release it without
// actually caching anything, then the deserialization cache still won't be initialized.
//
// Just leave it be for now, it'll fix itself by next frame.
if results.cached_dense.is_none() {
return RangeData {
indices: None,
data: None,
time_range: ResolvedTimeRange::EMPTY,
front_status: PromiseResult::Ready(()),
back_status: PromiseResult::Ready(()),
reentering: &REENTERING,
};
}
// TODO(Amanieu/parking_lot#289): we need two distinct mapped guards because it's
// impossible to return an owned type in a `parking_lot` guard.
// See <https://github.com/Amanieu/parking_lot/issues/289#issuecomment-1827545967>.
let indices = RwLockReadGuard::map(results, |results| &results.indices);
let data = RwLockReadGuard::map(self.inner.read_recursive(), |results| {
// Unwraps: the data is created when entering this function -- we know it's there
// and we know its type.
results
.cached_dense
.as_ref()
.unwrap()
.as_any()
.downcast_ref::<FlatVecDeque<C>>()
.unwrap()
});
RangeData {
indices: Some(Indices::Cached(indices)),
data: Some(Data::Cached(data)),
time_range: self.time_range,
front_status,
back_status,
reentering: &REENTERING,
}
}
}
// ---
/// Lazily cached results for a particular component when using a cached range query.
pub struct RangeComponentResultsInner {
pub(crate) indices: VecDeque<(TimeInt, RowId)>,
/// All the pending promises that must resolved in order to fill the missing data on the
/// front-side of the ringbuffer (i.e. further back in time).
///
/// Always sorted in ascending index order ([`TimeInt`] + [`RowId`] pair).
pub(crate) promises_front: Vec<((TimeInt, RowId), Promise)>,
/// All the pending promises that must resolved in order to fill the missing data on the
/// back-side of the ringbuffer (i.e. the most recent data).
///
/// Always sorted in ascending index order ([`TimeInt`] + [`RowId`] pair).
pub(crate) promises_back: Vec<((TimeInt, RowId), Promise)>,
/// Keeps track of the status of the data on the front-side of the cache.
pub(crate) front_status: (TimeInt, PromiseResult<()>),
/// Keeps track of the status of the data on the back-side of the cache.
pub(crate) back_status: (TimeInt, PromiseResult<()>),
/// The resolved, converted, deserialized dense data.
///
/// This has to be option because we have no way of initializing the underlying trait object
/// until we know what the actual native type that the caller expects is.
pub(crate) cached_dense: Option<Box<dyn ErasedFlatVecDeque + Send + Sync>>,
}
impl Clone for RangeComponentResultsInner {
#[inline]
fn clone(&self) -> Self {
Self {
indices: self.indices.clone(),
promises_front: self.promises_front.clone(),
promises_back: self.promises_back.clone(),
front_status: self.front_status.clone(),
back_status: self.back_status.clone(),
cached_dense: self.cached_dense.as_ref().map(|dense| dense.dyn_clone()),
}
}
}
impl SizeBytes for RangeComponentResultsInner {
#[inline]
fn heap_size_bytes(&self) -> u64 {
let Self {
indices,
promises_front,
promises_back,
front_status: _,
back_status: _,
cached_dense,
} = self;
indices.total_size_bytes()
+ promises_front.total_size_bytes()
+ promises_back.total_size_bytes()
+ cached_dense
.as_ref()
.map_or(0, |data| data.dyn_total_size_bytes())
}
}
impl std::fmt::Debug for RangeComponentResultsInner {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
let Self {
indices,
promises_front: _,
promises_back: _,
front_status: _,
back_status: _,
cached_dense: _, // we can't, we don't know the type
} = self;
if indices.is_empty() {
f.write_str("<empty>")
} else {
// Unwrap: checked above.
let index_start = indices.front().unwrap();
let index_end = indices.back().unwrap();
f.write_fmt(format_args!(
"[{:?}#{} .. {:?}#{}] {}",
index_start.0,
index_start.1,
index_end.0,
index_end.1,
re_format::format_bytes(self.total_size_bytes() as _)
))
}
}
}
impl RangeComponentResultsInner {
#[inline]
pub const fn empty() -> Self {
Self {
indices: VecDeque::new(),
promises_front: Vec::new(),
promises_back: Vec::new(),
front_status: (TimeInt::MIN, PromiseResult::Ready(())),
back_status: (TimeInt::MAX, PromiseResult::Ready(())),
cached_dense: None,
}
}
/// No-op in release.
#[inline]
pub fn sanity_check(&self) {
if !cfg!(debug_assertions) {
return;
}
let Self {
indices,
promises_front,
promises_back,
front_status: _,
back_status: _,
cached_dense,
} = self;
assert!(
promises_front.windows(2).all(|promises| {
let index_left = promises[0].0;
let index_right = promises[1].0;
index_left <= index_right
}),
"front promises must always be sorted in ascending index order"
);
if let (Some(p_index), Some(i_index)) = (
promises_front.last().map(|(index, _)| index),
indices.front(),
) {
assert!(
p_index < i_index,
"the rightmost front promise must have an index smaller than the leftmost data index ({p_index:?} < {i_index:?})",
);
}
assert!(
promises_back.windows(2).all(|promises| {
let index_left = promises[0].0;
let index_right = promises[1].0;
index_left <= index_right
}),
"back promises must always be sorted in ascending index order"
);
if let (Some(p_index), Some(i_index)) = (
promises_back.first().map(|(index, _)| index),
indices.back(),
) {
assert!(
i_index < p_index,
"the leftmost back promise must have an index larger than the rightmost data index ({i_index:?} < {p_index:?})",
);
}
if let Some(dense) = cached_dense.as_ref() {
assert_eq!(indices.len(), dense.dyn_num_entries());
}
}
/// Returns the pending time range that will be covered by the cached data.
///
/// Reminder: [`TimeInt::STATIC`] is never included in [`ResolvedTimeRange`]s.
#[inline]
pub fn pending_time_range(&self) -> Option<ResolvedTimeRange> {
let pending_front_min = self.promises_front.first().map(|((t, _), _)| *t);
let pending_front_max = self.promises_front.last().map(|((t, _), _)| *t);
let pending_back_max = self.promises_back.last().map(|((t, _), _)| *t);
let first_time = self.indices.front().map(|(t, _)| *t);
let last_time = self.indices.back().map(|(t, _)| *t);
Some(ResolvedTimeRange::new(
pending_front_min.or(first_time)?,
pending_back_max.or(last_time).or(pending_front_max)?,
))
}
#[inline]
pub fn contains_data_time(&self, data_time: TimeInt) -> bool {
let first_time = self.indices.front().map_or(&TimeInt::MAX, |(t, _)| t);
let last_time = self.indices.back().map_or(&TimeInt::MIN, |(t, _)| t);
*first_time <= data_time && data_time <= *last_time
}
/// Removes everything from the bucket that corresponds to a time equal or greater than the
/// specified `threshold`.
///
/// Returns the number of bytes removed.
#[inline]
pub fn truncate_at_time(&mut self, threshold: TimeInt) {
re_tracing::profile_function!();
let time_range = self.pending_time_range();
let Self {
indices,
promises_front,
promises_back,
front_status,
back_status,
cached_dense,
} = self;
if front_status.0 >= threshold {
let time_min = time_range.map_or(TimeInt::MIN, |range| range.min());
*front_status = (time_min, PromiseResult::Ready(()));
}
if back_status.0 >= threshold {
let time_max = time_range.map_or(TimeInt::MAX, |range| range.max());
*back_status = (time_max, PromiseResult::Ready(()));
}
// NOTE: promises are kept ascendingly sorted by index
{
let threshold_idx =
promises_front.partition_point(|((data_time, _), _)| *data_time < threshold);
promises_front.truncate(threshold_idx);
let threshold_idx =
promises_back.partition_point(|((data_time, _), _)| *data_time < threshold);
promises_back.truncate(threshold_idx);
}
let threshold_idx = indices.partition_point(|(data_time, _)| data_time < &threshold);
{
indices.truncate(threshold_idx);
if let Some(data) = cached_dense {
data.dyn_truncate(threshold_idx);
}
}
self.sanity_check();
}
#[inline]
pub fn clear(&mut self) {
*self = Self::empty();
}
}