1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
// This module implements Identifier, a short-optimized string allowed to
// contain only the ASCII characters hyphen, dot, 0-9, A-Z, a-z.
//
// As of mid-2021, the distribution of pre-release lengths on crates.io is:
//
//     length  count         length  count         length  count
//        0  355929            11      81            24       2
//        1     208            12      48            25       6
//        2     236            13      55            26      10
//        3    1909            14      25            27       4
//        4    1284            15      15            28       1
//        5    1742            16      35            30       1
//        6    3440            17       9            31       5
//        7    5624            18       6            32       1
//        8    1321            19      12            36       2
//        9     179            20       2            37     379
//       10      65            23      11
//
// and the distribution of build metadata lengths is:
//
//     length  count         length  count         length  count
//        0  364445             8    7725            18       1
//        1      72             9      16            19       1
//        2       7            10      85            20       1
//        3      28            11      17            22       4
//        4       9            12      10            26       1
//        5      68            13       9            27       1
//        6      73            14      10            40       5
//        7      53            15       6
//
// Therefore it really behooves us to be able to use the entire 8 bytes of a
// pointer for inline storage. For both pre-release and build metadata there are
// vastly more strings with length exactly 8 bytes than the sum over all lengths
// longer than 8 bytes.
//
// To differentiate the inline representation from the heap allocated long
// representation, we'll allocate heap pointers with 2-byte alignment so that
// they are guaranteed to have an unset least significant bit. Then in the repr
// we store for pointers, we rotate a 1 into the most significant bit of the
// most significant byte, which is never set for an ASCII byte.
//
// Inline repr:
//
//     0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx
//
// Heap allocated repr:
//
//     1ppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp 0
//     ^ most significant bit   least significant bit of orig ptr, rotated out ^
//
// Since the most significant bit doubles as a sign bit for the similarly sized
// signed integer type, the CPU has an efficient instruction for inspecting it,
// meaning we can differentiate between an inline repr and a heap allocated repr
// in one instruction. Effectively an inline repr always looks like a positive
// i64 while a heap allocated repr always looks like a negative i64.
//
// For the inline repr, we store \0 padding on the end of the stored characters,
// and thus the string length is readily determined efficiently by a cttz (count
// trailing zeros) or bsf (bit scan forward) instruction.
//
// For the heap allocated repr, the length is encoded as a base-128 varint at
// the head of the allocation.
//
// Empty strings are stored as an all-1 bit pattern, corresponding to -1i64.
// Consequently the all-0 bit pattern is never a legal representation in any
// repr, leaving it available as a niche for downstream code. For example this
// allows size_of::<Version>() == size_of::<Option<Version>>().

use crate::alloc::alloc::{alloc, dealloc, handle_alloc_error, Layout};
use core::isize;
use core::mem;
use core::num::{NonZeroU64, NonZeroUsize};
use core::ptr::{self, NonNull};
use core::slice;
use core::str;
use core::usize;

const PTR_BYTES: usize = mem::size_of::<NonNull<u8>>();

// If pointers are already 8 bytes or bigger, then 0. If pointers are smaller
// than 8 bytes, then Identifier will contain a byte array to raise its size up
// to 8 bytes total.
const TAIL_BYTES: usize = 8 * (PTR_BYTES < 8) as usize - PTR_BYTES * (PTR_BYTES < 8) as usize;

#[repr(C, align(8))]
pub(crate) struct Identifier {
    head: NonNull<u8>,
    tail: [u8; TAIL_BYTES],
}

impl Identifier {
    pub(crate) const fn empty() -> Self {
        // This is a separate constant because unsafe function calls are not
        // allowed in a const fn body, only in a const, until later rustc than
        // what we support.
        const HEAD: NonNull<u8> = unsafe { NonNull::new_unchecked(!0 as *mut u8) };

        // `mov rax, -1`
        Identifier {
            head: HEAD,
            tail: [!0; TAIL_BYTES],
        }
    }

    // SAFETY: string must be ASCII and not contain \0 bytes.
    pub(crate) unsafe fn new_unchecked(string: &str) -> Self {
        let len = string.len();
        debug_assert!(len <= isize::MAX as usize);
        match len as u64 {
            0 => Self::empty(),
            1..=8 => {
                let mut bytes = [0u8; mem::size_of::<Identifier>()];
                // SAFETY: string is big enough to read len bytes, bytes is big
                // enough to write len bytes, and they do not overlap.
                unsafe { ptr::copy_nonoverlapping(string.as_ptr(), bytes.as_mut_ptr(), len) };
                // SAFETY: the head field is nonzero because the input string
                // was at least 1 byte of ASCII and did not contain \0.
                unsafe { mem::transmute::<[u8; mem::size_of::<Identifier>()], Identifier>(bytes) }
            }
            9..=0xff_ffff_ffff_ffff => {
                // SAFETY: len is in a range that does not contain 0.
                let size = bytes_for_varint(unsafe { NonZeroUsize::new_unchecked(len) }) + len;
                let align = 2;
                // On 32-bit and 16-bit architecture, check for size overflowing
                // isize::MAX. Making an allocation request bigger than this to
                // the allocator is considered UB. All allocations (including
                // static ones) are limited to isize::MAX so we're guaranteed
                // len <= isize::MAX, and we know bytes_for_varint(len) <= 5
                // because 128**5 > isize::MAX, which means the only problem
                // that can arise is when isize::MAX - 5 <= len <= isize::MAX.
                // This is pretty much guaranteed to be malicious input so we
                // don't need to care about returning a good error message.
                if mem::size_of::<usize>() < 8 {
                    let max_alloc = usize::MAX / 2 - align;
                    assert!(size <= max_alloc);
                }
                // SAFETY: align is not zero, align is a power of two, and
                // rounding size up to align does not overflow isize::MAX.
                let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
                // SAFETY: layout's size is nonzero.
                let ptr = unsafe { alloc(layout) };
                if ptr.is_null() {
                    handle_alloc_error(layout);
                }
                let mut write = ptr;
                let mut varint_remaining = len;
                while varint_remaining > 0 {
                    // SAFETY: size is bytes_for_varint(len) bytes + len bytes.
                    // This is writing the first bytes_for_varint(len) bytes.
                    unsafe { ptr::write(write, varint_remaining as u8 | 0x80) };
                    varint_remaining >>= 7;
                    // SAFETY: still in bounds of the same allocation.
                    write = unsafe { write.add(1) };
                }
                // SAFETY: size is bytes_for_varint(len) bytes + len bytes. This
                // is writing to the last len bytes.
                unsafe { ptr::copy_nonoverlapping(string.as_ptr(), write, len) };
                Identifier {
                    head: ptr_to_repr(ptr),
                    tail: [0; TAIL_BYTES],
                }
            }
            0x100_0000_0000_0000..=0xffff_ffff_ffff_ffff => {
                unreachable!("please refrain from storing >64 petabytes of text in semver version");
            }
            #[cfg(no_exhaustive_int_match)] // rustc <1.33
            _ => unreachable!(),
        }
    }

    pub(crate) fn is_empty(&self) -> bool {
        // `cmp rdi, -1` -- basically: `repr as i64 == -1`
        let empty = Self::empty();
        let is_empty = self.head == empty.head && self.tail == empty.tail;
        // The empty representation does nothing on Drop. We can't let this one
        // drop normally because `impl Drop for Identifier` calls is_empty; that
        // would be an infinite recursion.
        mem::forget(empty);
        is_empty
    }

    fn is_inline(&self) -> bool {
        // `test rdi, rdi` -- basically: `repr as i64 >= 0`
        self.head.as_ptr() as usize >> (PTR_BYTES * 8 - 1) == 0
    }

    fn is_empty_or_inline(&self) -> bool {
        // `cmp rdi, -2` -- basically: `repr as i64 > -2`
        self.is_empty() || self.is_inline()
    }

    pub(crate) fn as_str(&self) -> &str {
        if self.is_empty() {
            ""
        } else if self.is_inline() {
            // SAFETY: repr is in the inline representation.
            unsafe { inline_as_str(self) }
        } else {
            // SAFETY: repr is in the heap allocated representation.
            unsafe { ptr_as_str(&self.head) }
        }
    }
}

impl Clone for Identifier {
    fn clone(&self) -> Self {
        if self.is_empty_or_inline() {
            Identifier {
                head: self.head,
                tail: self.tail,
            }
        } else {
            let ptr = repr_to_ptr(self.head);
            // SAFETY: ptr is one of our own heap allocations.
            let len = unsafe { decode_len(ptr) };
            let size = bytes_for_varint(len) + len.get();
            let align = 2;
            // SAFETY: align is not zero, align is a power of two, and rounding
            // size up to align does not overflow isize::MAX. This is just
            // duplicating a previous allocation where all of these guarantees
            // were already made.
            let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
            // SAFETY: layout's size is nonzero.
            let clone = unsafe { alloc(layout) };
            if clone.is_null() {
                handle_alloc_error(layout);
            }
            // SAFETY: new allocation cannot overlap the previous one (this was
            // not a realloc). The argument ptrs are readable/writeable
            // respectively for size bytes.
            unsafe { ptr::copy_nonoverlapping(ptr, clone, size) }
            Identifier {
                head: ptr_to_repr(clone),
                tail: [0; TAIL_BYTES],
            }
        }
    }
}

impl Drop for Identifier {
    fn drop(&mut self) {
        if self.is_empty_or_inline() {
            return;
        }
        let ptr = repr_to_ptr_mut(self.head);
        // SAFETY: ptr is one of our own heap allocations.
        let len = unsafe { decode_len(ptr) };
        let size = bytes_for_varint(len) + len.get();
        let align = 2;
        // SAFETY: align is not zero, align is a power of two, and rounding
        // size up to align does not overflow usize::MAX. These guarantees were
        // made when originally allocating this memory.
        let layout = unsafe { Layout::from_size_align_unchecked(size, align) };
        // SAFETY: ptr was previously allocated by the same allocator with the
        // same layout.
        unsafe { dealloc(ptr, layout) }
    }
}

impl PartialEq for Identifier {
    fn eq(&self, rhs: &Self) -> bool {
        if self.is_empty_or_inline() {
            // Fast path (most common)
            self.head == rhs.head && self.tail == rhs.tail
        } else if rhs.is_empty_or_inline() {
            false
        } else {
            // SAFETY: both reprs are in the heap allocated representation.
            unsafe { ptr_as_str(&self.head) == ptr_as_str(&rhs.head) }
        }
    }
}

unsafe impl Send for Identifier {}
unsafe impl Sync for Identifier {}

// We use heap pointers that are 2-byte aligned, meaning they have an
// insignificant 0 in the least significant bit. We take advantage of that
// unneeded bit to rotate a 1 into the most significant bit to make the repr
// distinguishable from ASCII bytes.
fn ptr_to_repr(original: *mut u8) -> NonNull<u8> {
    // `mov eax, 1`
    // `shld rax, rdi, 63`
    let modified = (original as usize | 1).rotate_right(1);

    // `original + (modified - original)`, but being mindful of provenance.
    let diff = modified.wrapping_sub(original as usize);
    let modified = original.wrapping_add(diff);

    // SAFETY: the most significant bit of repr is known to be set, so the value
    // is not zero.
    unsafe { NonNull::new_unchecked(modified) }
}

// Shift out the 1 previously placed into the most significant bit of the least
// significant byte. Shift in a low 0 bit to reconstruct the original 2-byte
// aligned pointer.
fn repr_to_ptr(modified: NonNull<u8>) -> *const u8 {
    // `lea rax, [rdi + rdi]`
    let modified = modified.as_ptr();
    let original = (modified as usize) << 1;

    // `modified + (original - modified)`, but being mindful of provenance.
    let diff = original.wrapping_sub(modified as usize);
    modified.wrapping_add(diff)
}

fn repr_to_ptr_mut(repr: NonNull<u8>) -> *mut u8 {
    repr_to_ptr(repr) as *mut u8
}

// Compute the length of the inline string, assuming the argument is in short
// string representation. Short strings are stored as 1 to 8 nonzero ASCII
// bytes, followed by \0 padding for the remaining bytes.
//
// SAFETY: the identifier must indeed be in the inline representation.
unsafe fn inline_len(repr: &Identifier) -> NonZeroUsize {
    // SAFETY: Identifier's layout is align(8) and at least size 8. We're doing
    // an aligned read of the first 8 bytes from it. The bytes are not all zero
    // because inline strings are at least 1 byte long and cannot contain \0.
    let repr = unsafe { ptr::read(repr as *const Identifier as *const NonZeroU64) };

    // Rustc >=1.53 has intrinsics for counting zeros on a non-zeroable integer.
    // On many architectures these are more efficient than counting on ordinary
    // zeroable integers (bsf vs cttz). On rustc <1.53 without those intrinsics,
    // we count zeros in the u64 rather than the NonZeroU64.
    #[cfg(no_nonzero_bitscan)]
    let repr = repr.get();

    #[cfg(target_endian = "little")]
    let zero_bits_on_string_end = repr.leading_zeros();
    #[cfg(target_endian = "big")]
    let zero_bits_on_string_end = repr.trailing_zeros();

    let nonzero_bytes = 8 - zero_bits_on_string_end as usize / 8;

    // SAFETY: repr is nonzero, so it has at most 63 zero bits on either end,
    // thus at least one nonzero byte.
    unsafe { NonZeroUsize::new_unchecked(nonzero_bytes) }
}

// SAFETY: repr must be in the inline representation, i.e. at least 1 and at
// most 8 nonzero ASCII bytes padded on the end with \0 bytes.
unsafe fn inline_as_str(repr: &Identifier) -> &str {
    let ptr = repr as *const Identifier as *const u8;
    let len = unsafe { inline_len(repr) }.get();
    // SAFETY: we are viewing the nonzero ASCII prefix of the inline repr's
    // contents as a slice of bytes. Input/output lifetimes are correctly
    // associated.
    let slice = unsafe { slice::from_raw_parts(ptr, len) };
    // SAFETY: the string contents are known to be only ASCII bytes, which are
    // always valid UTF-8.
    unsafe { str::from_utf8_unchecked(slice) }
}

// Decode varint. Varints consist of between one and eight base-128 digits, each
// of which is stored in a byte with most significant bit set. Adjacent to the
// varint in memory there is guaranteed to be at least 9 ASCII bytes, each of
// which has an unset most significant bit.
//
// SAFETY: ptr must be one of our own heap allocations, with the varint header
// already written.
unsafe fn decode_len(ptr: *const u8) -> NonZeroUsize {
    // SAFETY: There is at least one byte of varint followed by at least 9 bytes
    // of string content, which is at least 10 bytes total for the allocation,
    // so reading the first two is no problem.
    let [first, second] = unsafe { ptr::read(ptr as *const [u8; 2]) };
    if second < 0x80 {
        // SAFETY: the length of this heap allocated string has been encoded as
        // one base-128 digit, so the length is at least 9 and at most 127. It
        // cannot be zero.
        unsafe { NonZeroUsize::new_unchecked((first & 0x7f) as usize) }
    } else {
        return unsafe { decode_len_cold(ptr) };

        // Identifiers 128 bytes or longer. This is not exercised by any crate
        // version currently published to crates.io.
        #[cold]
        #[inline(never)]
        unsafe fn decode_len_cold(mut ptr: *const u8) -> NonZeroUsize {
            let mut len = 0;
            let mut shift = 0;
            loop {
                // SAFETY: varint continues while there are bytes having the
                // most significant bit set, i.e. until we start hitting the
                // ASCII string content with msb unset.
                let byte = unsafe { *ptr };
                if byte < 0x80 {
                    // SAFETY: the string length is known to be 128 bytes or
                    // longer.
                    return unsafe { NonZeroUsize::new_unchecked(len) };
                }
                // SAFETY: still in bounds of the same allocation.
                ptr = unsafe { ptr.add(1) };
                len += ((byte & 0x7f) as usize) << shift;
                shift += 7;
            }
        }
    }
}

// SAFETY: repr must be in the heap allocated representation, with varint header
// and string contents already written.
unsafe fn ptr_as_str(repr: &NonNull<u8>) -> &str {
    let ptr = repr_to_ptr(*repr);
    let len = unsafe { decode_len(ptr) };
    let header = bytes_for_varint(len);
    let slice = unsafe { slice::from_raw_parts(ptr.add(header), len.get()) };
    // SAFETY: all identifier contents are ASCII bytes, which are always valid
    // UTF-8.
    unsafe { str::from_utf8_unchecked(slice) }
}

// Number of base-128 digits required for the varint representation of a length.
fn bytes_for_varint(len: NonZeroUsize) -> usize {
    #[cfg(no_nonzero_bitscan)] // rustc <1.53
    let len = len.get();

    let usize_bits = mem::size_of::<usize>() * 8;
    let len_bits = usize_bits - len.leading_zeros() as usize;
    (len_bits + 6) / 7
}