1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
// DO NOT EDIT! This file was auto-generated by crates/re_types_builder/src/codegen/rust/api.rs
// Based on "crates/re_types/definitions/rerun/archetypes/image.fbs".

#![allow(trivial_numeric_casts)]
#![allow(unused_imports)]
#![allow(unused_parens)]
#![allow(clippy::clone_on_copy)]
#![allow(clippy::cloned_instead_of_copied)]
#![allow(clippy::iter_on_single_items)]
#![allow(clippy::map_flatten)]
#![allow(clippy::match_wildcard_for_single_variants)]
#![allow(clippy::needless_question_mark)]
#![allow(clippy::new_without_default)]
#![allow(clippy::redundant_closure)]
#![allow(clippy::too_many_arguments)]
#![allow(clippy::too_many_lines)]
#![allow(clippy::unnecessary_cast)]

use ::re_types_core::external::arrow2;
use ::re_types_core::ComponentName;
use ::re_types_core::SerializationResult;
use ::re_types_core::{ComponentBatch, MaybeOwnedComponentBatch};
use ::re_types_core::{DeserializationError, DeserializationResult};

/// **Archetype**: A monochrome or color image.
///
/// The order of dimensions in the underlying `TensorData` follows the typical
/// row-major, interleaved-pixel image format. Additionally, Rerun orders the
/// `TensorDimension`s within the shape description from outer-most to inner-most.
///
/// As such, the shape of the `TensorData` must be mappable to:
/// - A `HxW` tensor, treated as a grayscale image.
/// - A `HxWx3` tensor, treated as an RGB image.
/// - A `HxWx4` tensor, treated as an RGBA image.
///
/// Leading and trailing unit-dimensions are ignored, so that
/// `1x480x640x3x1` is treated as a `480x640x3` RGB image.
///
/// Rerun also supports compressed image encoded as JPEG, N12, and YUY2.
/// Using these formats can save a lot of bandwidth and memory.
/// See [`crate::components::TensorData`] for more.
///
/// ## Example
///
/// ### `image_simple`:
/// ```ignore
/// use ndarray::{s, Array, ShapeBuilder};
///
/// fn main() -> Result<(), Box<dyn std::error::Error>> {
///     let rec = rerun::RecordingStreamBuilder::new("rerun_example_image").spawn()?;
///
///     let mut image = Array::<u8, _>::zeros((200, 300, 3).f());
///     image.slice_mut(s![.., .., 0]).fill(255);
///     image.slice_mut(s![50..150, 50..150, 0]).fill(0);
///     image.slice_mut(s![50..150, 50..150, 1]).fill(255);
///
///     rec.log("image", &rerun::Image::try_from(image)?)?;
///
///     Ok(())
/// }
/// ```
/// <center>
/// <picture>
///   <source media="(max-width: 480px)" srcset="https://static.rerun.io/image_simple/06ba7f8582acc1ffb42a7fd0006fad7816f3e4e4/480w.png">
///   <source media="(max-width: 768px)" srcset="https://static.rerun.io/image_simple/06ba7f8582acc1ffb42a7fd0006fad7816f3e4e4/768w.png">
///   <source media="(max-width: 1024px)" srcset="https://static.rerun.io/image_simple/06ba7f8582acc1ffb42a7fd0006fad7816f3e4e4/1024w.png">
///   <source media="(max-width: 1200px)" srcset="https://static.rerun.io/image_simple/06ba7f8582acc1ffb42a7fd0006fad7816f3e4e4/1200w.png">
///   <img src="https://static.rerun.io/image_simple/06ba7f8582acc1ffb42a7fd0006fad7816f3e4e4/full.png" width="640">
/// </picture>
/// </center>
#[derive(Clone, Debug, PartialEq)]
pub struct Image {
    /// The image data. Should always be a rank-2 or rank-3 tensor.
    pub data: crate::components::TensorData,

    /// An optional floating point value that specifies the 2D drawing order.
    ///
    /// Objects with higher values are drawn on top of those with lower values.
    pub draw_order: Option<crate::components::DrawOrder>,
}

impl ::re_types_core::SizeBytes for Image {
    #[inline]
    fn heap_size_bytes(&self) -> u64 {
        self.data.heap_size_bytes() + self.draw_order.heap_size_bytes()
    }

    #[inline]
    fn is_pod() -> bool {
        <crate::components::TensorData>::is_pod()
            && <Option<crate::components::DrawOrder>>::is_pod()
    }
}

static REQUIRED_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
    once_cell::sync::Lazy::new(|| ["rerun.components.TensorData".into()]);

static RECOMMENDED_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
    once_cell::sync::Lazy::new(|| ["rerun.components.ImageIndicator".into()]);

static OPTIONAL_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 1usize]> =
    once_cell::sync::Lazy::new(|| ["rerun.components.DrawOrder".into()]);

static ALL_COMPONENTS: once_cell::sync::Lazy<[ComponentName; 3usize]> =
    once_cell::sync::Lazy::new(|| {
        [
            "rerun.components.TensorData".into(),
            "rerun.components.ImageIndicator".into(),
            "rerun.components.DrawOrder".into(),
        ]
    });

impl Image {
    /// The total number of components in the archetype: 1 required, 1 recommended, 1 optional
    pub const NUM_COMPONENTS: usize = 3usize;
}

/// Indicator component for the [`Image`] [`::re_types_core::Archetype`]
pub type ImageIndicator = ::re_types_core::GenericIndicatorComponent<Image>;

impl ::re_types_core::Archetype for Image {
    type Indicator = ImageIndicator;

    #[inline]
    fn name() -> ::re_types_core::ArchetypeName {
        "rerun.archetypes.Image".into()
    }

    #[inline]
    fn indicator() -> MaybeOwnedComponentBatch<'static> {
        static INDICATOR: ImageIndicator = ImageIndicator::DEFAULT;
        MaybeOwnedComponentBatch::Ref(&INDICATOR)
    }

    #[inline]
    fn required_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        REQUIRED_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn recommended_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        RECOMMENDED_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn optional_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        OPTIONAL_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn all_components() -> ::std::borrow::Cow<'static, [ComponentName]> {
        ALL_COMPONENTS.as_slice().into()
    }

    #[inline]
    fn from_arrow_components(
        arrow_data: impl IntoIterator<Item = (ComponentName, Box<dyn arrow2::array::Array>)>,
    ) -> DeserializationResult<Self> {
        re_tracing::profile_function!();
        use ::re_types_core::{Loggable as _, ResultExt as _};
        let arrays_by_name: ::std::collections::HashMap<_, _> = arrow_data
            .into_iter()
            .map(|(name, array)| (name.full_name(), array))
            .collect();
        let data = {
            let array = arrays_by_name
                .get("rerun.components.TensorData")
                .ok_or_else(DeserializationError::missing_data)
                .with_context("rerun.archetypes.Image#data")?;
            <crate::components::TensorData>::from_arrow_opt(&**array)
                .with_context("rerun.archetypes.Image#data")?
                .into_iter()
                .next()
                .flatten()
                .ok_or_else(DeserializationError::missing_data)
                .with_context("rerun.archetypes.Image#data")?
        };
        let draw_order = if let Some(array) = arrays_by_name.get("rerun.components.DrawOrder") {
            <crate::components::DrawOrder>::from_arrow_opt(&**array)
                .with_context("rerun.archetypes.Image#draw_order")?
                .into_iter()
                .next()
                .flatten()
        } else {
            None
        };
        Ok(Self { data, draw_order })
    }
}

impl ::re_types_core::AsComponents for Image {
    fn as_component_batches(&self) -> Vec<MaybeOwnedComponentBatch<'_>> {
        re_tracing::profile_function!();
        use ::re_types_core::Archetype as _;
        [
            Some(Self::indicator()),
            Some((&self.data as &dyn ComponentBatch).into()),
            self.draw_order
                .as_ref()
                .map(|comp| (comp as &dyn ComponentBatch).into()),
        ]
        .into_iter()
        .flatten()
        .collect()
    }
}

impl Image {
    /// Create a new `Image`.
    #[inline]
    pub fn new(data: impl Into<crate::components::TensorData>) -> Self {
        Self {
            data: data.into(),
            draw_order: None,
        }
    }

    /// An optional floating point value that specifies the 2D drawing order.
    ///
    /// Objects with higher values are drawn on top of those with lower values.
    #[inline]
    pub fn with_draw_order(mut self, draw_order: impl Into<crate::components::DrawOrder>) -> Self {
        self.draw_order = Some(draw_order.into());
        self
    }
}