#[cfg(feature = "serde-serialize-no-std")]
use serde::{Deserialize, Serialize};
use approx::AbsDiffEq;
use num::Zero;
use crate::allocator::Allocator;
use crate::base::{DefaultAllocator, Matrix2, OMatrix, OVector, SquareMatrix, Vector2};
use crate::dimension::{Dim, DimDiff, DimSub, U1};
use crate::storage::Storage;
use simba::scalar::ComplexField;
use crate::linalg::givens::GivensRotation;
use crate::linalg::SymmetricTridiagonal;
#[cfg_attr(feature = "serde-serialize-no-std", derive(Serialize, Deserialize))]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(serialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T::RealField, D>,
OVector<T::RealField, D>: Serialize,
OMatrix<T, D, D>: Serialize"))
)]
#[cfg_attr(
feature = "serde-serialize-no-std",
serde(bound(deserialize = "DefaultAllocator: Allocator<T, D, D> +
Allocator<T::RealField, D>,
OVector<T::RealField, D>: Deserialize<'de>,
OMatrix<T, D, D>: Deserialize<'de>"))
)]
#[derive(Clone, Debug)]
pub struct SymmetricEigen<T: ComplexField, D: Dim>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
{
pub eigenvectors: OMatrix<T, D, D>,
pub eigenvalues: OVector<T::RealField, D>,
}
impl<T: ComplexField, D: Dim> Copy for SymmetricEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
OMatrix<T, D, D>: Copy,
OVector<T::RealField, D>: Copy,
{
}
impl<T: ComplexField, D: Dim> SymmetricEigen<T, D>
where
DefaultAllocator: Allocator<T, D, D> + Allocator<T::RealField, D>,
{
pub fn new(m: OMatrix<T, D, D>) -> Self
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
{
Self::try_new(m, T::RealField::default_epsilon(), 0).unwrap()
}
pub fn try_new(m: OMatrix<T, D, D>, eps: T::RealField, max_niter: usize) -> Option<Self>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
{
Self::do_decompose(m, true, eps, max_niter).map(|(vals, vecs)| SymmetricEigen {
eigenvectors: vecs.unwrap(),
eigenvalues: vals,
})
}
fn do_decompose(
mut matrix: OMatrix<T, D, D>,
eigenvectors: bool,
eps: T::RealField,
max_niter: usize,
) -> Option<(OVector<T::RealField, D>, Option<OMatrix<T, D, D>>)>
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T, DimDiff<D, U1>> + Allocator<T::RealField, DimDiff<D, U1>>,
{
assert!(
matrix.is_square(),
"Unable to compute the eigendecomposition of a non-square matrix."
);
let dim = matrix.nrows();
let m_amax = matrix.camax();
if !m_amax.is_zero() {
matrix.unscale_mut(m_amax.clone());
}
let (mut q_mat, mut diag, mut off_diag);
if eigenvectors {
let res = SymmetricTridiagonal::new(matrix).unpack();
q_mat = Some(res.0);
diag = res.1;
off_diag = res.2;
} else {
let res = SymmetricTridiagonal::new(matrix).unpack_tridiagonal();
q_mat = None;
diag = res.0;
off_diag = res.1;
}
if dim == 1 {
diag.scale_mut(m_amax);
return Some((diag, q_mat));
}
let mut niter = 0;
let (mut start, mut end) =
Self::delimit_subproblem(&diag, &mut off_diag, dim - 1, eps.clone());
while end != start {
let subdim = end - start + 1;
#[allow(clippy::comparison_chain)]
if subdim > 2 {
let m = end - 1;
let n = end;
let mut vec = Vector2::new(
diag[start].clone()
- wilkinson_shift(
diag[m].clone().clone(),
diag[n].clone(),
off_diag[m].clone().clone(),
),
off_diag[start].clone(),
);
for i in start..n {
let j = i + 1;
if let Some((rot, norm)) = GivensRotation::cancel_y(&vec) {
if i > start {
off_diag[i - 1] = norm;
}
let mii = diag[i].clone();
let mjj = diag[j].clone();
let mij = off_diag[i].clone();
let cc = rot.c() * rot.c();
let ss = rot.s() * rot.s();
let cs = rot.c() * rot.s();
let b = cs.clone() * crate::convert(2.0) * mij.clone();
diag[i] = (cc.clone() * mii.clone() + ss.clone() * mjj.clone()) - b.clone();
diag[j] = (ss.clone() * mii.clone() + cc.clone() * mjj.clone()) + b;
off_diag[i] = cs * (mii - mjj) + mij * (cc - ss);
if i != n - 1 {
vec.x = off_diag[i].clone();
vec.y = -rot.s() * off_diag[i + 1].clone();
off_diag[i + 1] *= rot.c();
}
if let Some(ref mut q) = q_mat {
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
rot.inverse().rotate_rows(&mut q.fixed_columns_mut::<2>(i));
}
} else {
break;
}
}
if off_diag[m].clone().norm1()
<= eps.clone() * (diag[m].clone().norm1() + diag[n].clone().norm1())
{
end -= 1;
}
} else if subdim == 2 {
let m = Matrix2::new(
diag[start].clone(),
off_diag[start].clone().conjugate(),
off_diag[start].clone(),
diag[start + 1].clone(),
);
let eigvals = m.eigenvalues().unwrap();
let basis = Vector2::new(
eigvals.x.clone() - diag[start + 1].clone(),
off_diag[start].clone(),
);
diag[start] = eigvals[0].clone();
diag[start + 1] = eigvals[1].clone();
if let Some(ref mut q) = q_mat {
if let Some((rot, _)) =
GivensRotation::try_new(basis.x.clone(), basis.y.clone(), eps.clone())
{
let rot = GivensRotation::new_unchecked(rot.c(), T::from_real(rot.s()));
rot.rotate_rows(&mut q.fixed_columns_mut::<2>(start));
}
}
end -= 1;
}
let sub = Self::delimit_subproblem(&diag, &mut off_diag, end, eps.clone());
start = sub.0;
end = sub.1;
niter += 1;
if niter == max_niter {
return None;
}
}
diag.scale_mut(m_amax);
Some((diag, q_mat))
}
fn delimit_subproblem(
diag: &OVector<T::RealField, D>,
off_diag: &mut OVector<T::RealField, DimDiff<D, U1>>,
end: usize,
eps: T::RealField,
) -> (usize, usize)
where
D: DimSub<U1>,
DefaultAllocator: Allocator<T::RealField, DimDiff<D, U1>>,
{
let mut n = end;
while n > 0 {
let m = n - 1;
if off_diag[m].clone().norm1()
> eps.clone() * (diag[n].clone().norm1() + diag[m].clone().norm1())
{
break;
}
n -= 1;
}
if n == 0 {
return (0, 0);
}
let mut new_start = n - 1;
while new_start > 0 {
let m = new_start - 1;
if off_diag[m].clone().is_zero()
|| off_diag[m].clone().norm1()
<= eps.clone() * (diag[new_start].clone().norm1() + diag[m].clone().norm1())
{
off_diag[m] = T::RealField::zero();
break;
}
new_start -= 1;
}
(new_start, n)
}
#[must_use]
pub fn recompose(&self) -> OMatrix<T, D, D> {
let mut u_t = self.eigenvectors.clone();
for i in 0..self.eigenvalues.len() {
let val = self.eigenvalues[i].clone();
u_t.column_mut(i).scale_mut(val);
}
u_t.adjoint_mut();
&self.eigenvectors * u_t
}
}
pub fn wilkinson_shift<T: ComplexField>(tmm: T, tnn: T, tmn: T) -> T {
let sq_tmn = tmn.clone() * tmn;
if !sq_tmn.is_zero() {
let d = (tmm - tnn.clone()) * crate::convert(0.5);
tnn - sq_tmn.clone() / (d.clone() + d.clone().signum() * (d.clone() * d + sq_tmn).sqrt())
} else {
tnn
}
}
impl<T: ComplexField, D: DimSub<U1>, S: Storage<T, D, D>> SquareMatrix<T, D, S>
where
DefaultAllocator: Allocator<T, D, D>
+ Allocator<T, DimDiff<D, U1>>
+ Allocator<T::RealField, D>
+ Allocator<T::RealField, DimDiff<D, U1>>,
{
#[must_use]
pub fn symmetric_eigenvalues(&self) -> OVector<T::RealField, D> {
SymmetricEigen::do_decompose(
self.clone_owned(),
false,
T::RealField::default_epsilon(),
0,
)
.unwrap()
.0
}
}
#[cfg(test)]
mod test {
use crate::base::Matrix2;
fn expected_shift(m: Matrix2<f64>) -> f64 {
let vals = m.eigenvalues().unwrap();
if (vals.x - m.m22).abs() < (vals.y - m.m22).abs() {
vals.x
} else {
vals.y
}
}
#[cfg(feature = "rand")]
#[test]
fn wilkinson_shift_random() {
for _ in 0..1000 {
let m = Matrix2::new_random();
let m = m * m.transpose();
let expected = expected_shift(m);
let computed = super::wilkinson_shift(m.m11, m.m22, m.m12);
assert!(relative_eq!(expected, computed, epsilon = 1.0e-7));
}
}
#[test]
fn wilkinson_shift_zero() {
let m = Matrix2::new(0.0, 0.0, 0.0, 0.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_diagonal() {
let m = Matrix2::new(0.0, 42.0, 42.0, 0.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_off_diagonal() {
let m = Matrix2::new(42.0, 0.0, 0.0, 64.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_trace() {
let m = Matrix2::new(42.0, 20.0, 20.0, -42.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_diag_diff_and_zero_off_diagonal() {
let m = Matrix2::new(42.0, 0.0, 0.0, 42.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
#[test]
fn wilkinson_shift_zero_det() {
let m = Matrix2::new(2.0, 4.0, 4.0, 8.0);
assert!(relative_eq!(
expected_shift(m),
super::wilkinson_shift(m.m11, m.m22, m.m12)
));
}
}