1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
//! Implementation of the ZipCrypto algorithm
//!
//! The following paper was used to implement the ZipCrypto algorithm:
//! [https://courses.cs.ut.ee/MTAT.07.022/2015_fall/uploads/Main/dmitri-report-f15-16.pdf](https://courses.cs.ut.ee/MTAT.07.022/2015_fall/uploads/Main/dmitri-report-f15-16.pdf)

use std::num::Wrapping;

/// A container to hold the current key state
#[derive(Clone, Copy)]
pub(crate) struct ZipCryptoKeys {
    key_0: Wrapping<u32>,
    key_1: Wrapping<u32>,
    key_2: Wrapping<u32>,
}

impl ZipCryptoKeys {
    fn new() -> ZipCryptoKeys {
        ZipCryptoKeys {
            key_0: Wrapping(0x12345678),
            key_1: Wrapping(0x23456789),
            key_2: Wrapping(0x34567890),
        }
    }

    fn update(&mut self, input: u8) {
        self.key_0 = ZipCryptoKeys::crc32(self.key_0, input);
        self.key_1 =
            (self.key_1 + (self.key_0 & Wrapping(0xff))) * Wrapping(0x08088405) + Wrapping(1);
        self.key_2 = ZipCryptoKeys::crc32(self.key_2, (self.key_1 >> 24).0 as u8);
    }

    fn stream_byte(&mut self) -> u8 {
        let temp: Wrapping<u16> = Wrapping(self.key_2.0 as u16) | Wrapping(3);
        ((temp * (temp ^ Wrapping(1))) >> 8).0 as u8
    }

    fn decrypt_byte(&mut self, cipher_byte: u8) -> u8 {
        let plain_byte: u8 = self.stream_byte() ^ cipher_byte;
        self.update(plain_byte);
        plain_byte
    }

    #[allow(dead_code)]
    fn encrypt_byte(&mut self, plain_byte: u8) -> u8 {
        let cipher_byte: u8 = self.stream_byte() ^ plain_byte;
        self.update(plain_byte);
        cipher_byte
    }

    fn crc32(crc: Wrapping<u32>, input: u8) -> Wrapping<u32> {
        (crc >> 8) ^ Wrapping(CRCTABLE[((crc & Wrapping(0xff)).0 as u8 ^ input) as usize])
    }
    pub(crate) fn derive(password: &[u8]) -> ZipCryptoKeys {
        let mut keys = ZipCryptoKeys::new();
        for byte in password.iter() {
            keys.update(*byte);
        }
        keys
    }
}

/// A ZipCrypto reader with unverified password
pub struct ZipCryptoReader<R> {
    file: R,
    keys: ZipCryptoKeys,
}

pub enum ZipCryptoValidator {
    PkzipCrc32(u32),
    InfoZipMsdosTime(u16),
}

impl<R: std::io::Read> ZipCryptoReader<R> {
    /// Note: The password is `&[u8]` and not `&str` because the
    /// [zip specification](https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.3.TXT)
    /// does not specify password encoding (see function `update_keys` in the specification).
    /// Therefore, if `&str` was used, the password would be UTF-8 and it
    /// would be impossible to decrypt files that were encrypted with a
    /// password byte sequence that is unrepresentable in UTF-8.
    pub fn new(file: R, password: &[u8]) -> ZipCryptoReader<R> {
        ZipCryptoReader {
            file,
            keys: ZipCryptoKeys::derive(password),
        }
    }

    /// Read the ZipCrypto header bytes and validate the password.
    pub fn validate(
        mut self,
        validator: ZipCryptoValidator,
    ) -> Result<Option<ZipCryptoReaderValid<R>>, std::io::Error> {
        // ZipCrypto prefixes a file with a 12 byte header
        let mut header_buf = [0u8; 12];
        self.file.read_exact(&mut header_buf)?;
        for byte in header_buf.iter_mut() {
            *byte = self.keys.decrypt_byte(*byte);
        }

        match validator {
            ZipCryptoValidator::PkzipCrc32(crc32_plaintext) => {
                // PKZIP before 2.0 used 2 byte CRC check.
                // PKZIP 2.0+ used 1 byte CRC check. It's more secure.
                // We also use 1 byte CRC.

                if (crc32_plaintext >> 24) as u8 != header_buf[11] {
                    return Ok(None); // Wrong password
                }
            }
            ZipCryptoValidator::InfoZipMsdosTime(last_mod_time) => {
                // Info-ZIP modification to ZipCrypto format:
                // If bit 3 of the general purpose bit flag is set
                // (indicates that the file uses a data-descriptor section),
                // it uses high byte of 16-bit File Time.
                // Info-ZIP code probably writes 2 bytes of File Time.
                // We check only 1 byte.

                if (last_mod_time >> 8) as u8 != header_buf[11] {
                    return Ok(None); // Wrong password
                }
            }
        }

        Ok(Some(ZipCryptoReaderValid { reader: self }))
    }
}
pub(crate) struct ZipCryptoWriter<W> {
    pub(crate) writer: W,
    pub(crate) buffer: Vec<u8>,
    pub(crate) keys: ZipCryptoKeys,
}
impl<W: std::io::Write> ZipCryptoWriter<W> {
    pub(crate) fn finish(mut self, crc32: u32) -> std::io::Result<W> {
        self.buffer[11] = (crc32 >> 24) as u8;
        for byte in self.buffer.iter_mut() {
            *byte = self.keys.encrypt_byte(*byte);
        }
        self.writer.write_all(&self.buffer)?;
        self.writer.flush()?;
        Ok(self.writer)
    }
}
impl<W: std::io::Write> std::io::Write for ZipCryptoWriter<W> {
    fn write(&mut self, buf: &[u8]) -> std::io::Result<usize> {
        self.buffer.extend_from_slice(buf);
        Ok(buf.len())
    }
    fn flush(&mut self) -> std::io::Result<()> {
        Ok(())
    }
}

/// A ZipCrypto reader with verified password
pub struct ZipCryptoReaderValid<R> {
    reader: ZipCryptoReader<R>,
}

impl<R: std::io::Read> std::io::Read for ZipCryptoReaderValid<R> {
    fn read(&mut self, buf: &mut [u8]) -> std::io::Result<usize> {
        // Note: There might be potential for optimization. Inspiration can be found at:
        // https://github.com/kornelski/7z/blob/master/CPP/7zip/Crypto/ZipCrypto.cpp

        let result = self.reader.file.read(buf);
        for byte in buf.iter_mut() {
            *byte = self.reader.keys.decrypt_byte(*byte);
        }
        result
    }
}

impl<R: std::io::Read> ZipCryptoReaderValid<R> {
    /// Consumes this decoder, returning the underlying reader.
    pub fn into_inner(self) -> R {
        self.reader.file
    }
}

static CRCTABLE: [u32; 256] = [
    0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 0xe963a535, 0x9e6495a3,
    0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91,
    0x1db71064, 0x6ab020f2, 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
    0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 0xfa0f3d63, 0x8d080df5,
    0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b,
    0x35b5a8fa, 0x42b2986c, 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
    0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 0xcfba9599, 0xb8bda50f,
    0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d,
    0x76dc4190, 0x01db7106, 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
    0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 0x91646c97, 0xe6635c01,
    0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457,
    0x65b0d9c6, 0x12b7e950, 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
    0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 0xa4d1c46d, 0xd3d6f4fb,
    0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9,
    0x5005713c, 0x270241aa, 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
    0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 0xb7bd5c3b, 0xc0ba6cad,
    0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683,
    0xe3630b12, 0x94643b84, 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
    0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 0x196c3671, 0x6e6b06e7,
    0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5,
    0xd6d6a3e8, 0xa1d1937e, 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
    0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 0x316e8eef, 0x4669be79,
    0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f,
    0xc5ba3bbe, 0xb2bd0b28, 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
    0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 0x72076785, 0x05005713,
    0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21,
    0x86d3d2d4, 0xf1d4e242, 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
    0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 0x616bffd3, 0x166ccf45,
    0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db,
    0xaed16a4a, 0xd9d65adc, 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
    0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 0x54de5729, 0x23d967bf,
    0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d,
];