1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#![cfg_attr(not(feature = "full"), allow(dead_code))]

use crate::loom::sync::atomic::AtomicUsize;
use crate::loom::sync::{Arc, Condvar, Mutex};

use std::sync::atomic::Ordering::SeqCst;
use std::time::Duration;

#[derive(Debug)]
pub(crate) struct ParkThread {
    inner: Arc<Inner>,
}

/// Unblocks a thread that was blocked by `ParkThread`.
#[derive(Clone, Debug)]
pub(crate) struct UnparkThread {
    inner: Arc<Inner>,
}

#[derive(Debug)]
struct Inner {
    state: AtomicUsize,
    mutex: Mutex<()>,
    condvar: Condvar,
}

const EMPTY: usize = 0;
const PARKED: usize = 1;
const NOTIFIED: usize = 2;

tokio_thread_local! {
    static CURRENT_PARKER: ParkThread = ParkThread::new();
}

// Bit of a hack, but it is only for loom
#[cfg(loom)]
tokio_thread_local! {
    static CURRENT_THREAD_PARK_COUNT: AtomicUsize = AtomicUsize::new(0);
}

// ==== impl ParkThread ====

impl ParkThread {
    pub(crate) fn new() -> Self {
        Self {
            inner: Arc::new(Inner {
                state: AtomicUsize::new(EMPTY),
                mutex: Mutex::new(()),
                condvar: Condvar::new(),
            }),
        }
    }

    pub(crate) fn unpark(&self) -> UnparkThread {
        let inner = self.inner.clone();
        UnparkThread { inner }
    }

    pub(crate) fn park(&mut self) {
        #[cfg(loom)]
        CURRENT_THREAD_PARK_COUNT.with(|count| count.fetch_add(1, SeqCst));
        self.inner.park();
    }

    pub(crate) fn park_timeout(&mut self, duration: Duration) {
        #[cfg(loom)]
        CURRENT_THREAD_PARK_COUNT.with(|count| count.fetch_add(1, SeqCst));

        // Wasm doesn't have threads, so just sleep.
        #[cfg(not(target_family = "wasm"))]
        self.inner.park_timeout(duration);
        #[cfg(target_family = "wasm")]
        std::thread::sleep(duration);
    }

    pub(crate) fn shutdown(&mut self) {
        self.inner.shutdown();
    }
}

// ==== impl Inner ====

impl Inner {
    fn park(&self) {
        // If we were previously notified then we consume this notification and
        // return quickly.
        if self
            .state
            .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
            .is_ok()
        {
            return;
        }

        // Otherwise we need to coordinate going to sleep
        let mut m = self.mutex.lock();

        match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
            Ok(_) => {}
            Err(NOTIFIED) => {
                // We must read here, even though we know it will be `NOTIFIED`.
                // This is because `unpark` may have been called again since we read
                // `NOTIFIED` in the `compare_exchange` above. We must perform an
                // acquire operation that synchronizes with that `unpark` to observe
                // any writes it made before the call to unpark. To do that we must
                // read from the write it made to `state`.
                let old = self.state.swap(EMPTY, SeqCst);
                debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");

                return;
            }
            Err(actual) => panic!("inconsistent park state; actual = {}", actual),
        }

        loop {
            m = self.condvar.wait(m).unwrap();

            if self
                .state
                .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
                .is_ok()
            {
                // got a notification
                return;
            }

            // spurious wakeup, go back to sleep
        }
    }

    /// Parks the current thread for at most `dur`.
    fn park_timeout(&self, dur: Duration) {
        // Like `park` above we have a fast path for an already-notified thread,
        // and afterwards we start coordinating for a sleep. Return quickly.
        if self
            .state
            .compare_exchange(NOTIFIED, EMPTY, SeqCst, SeqCst)
            .is_ok()
        {
            return;
        }

        if dur == Duration::from_millis(0) {
            return;
        }

        let m = self.mutex.lock();

        match self.state.compare_exchange(EMPTY, PARKED, SeqCst, SeqCst) {
            Ok(_) => {}
            Err(NOTIFIED) => {
                // We must read again here, see `park`.
                let old = self.state.swap(EMPTY, SeqCst);
                debug_assert_eq!(old, NOTIFIED, "park state changed unexpectedly");

                return;
            }
            Err(actual) => panic!("inconsistent park_timeout state; actual = {}", actual),
        }

        // Wait with a timeout, and if we spuriously wake up or otherwise wake up
        // from a notification, we just want to unconditionally set the state back to
        // empty, either consuming a notification or un-flagging ourselves as
        // parked.
        let (_m, _result) = self.condvar.wait_timeout(m, dur).unwrap();

        match self.state.swap(EMPTY, SeqCst) {
            NOTIFIED => {} // got a notification, hurray!
            PARKED => {}   // no notification, alas
            n => panic!("inconsistent park_timeout state: {}", n),
        }
    }

    fn unpark(&self) {
        // To ensure the unparked thread will observe any writes we made before
        // this call, we must perform a release operation that `park` can
        // synchronize with. To do that we must write `NOTIFIED` even if `state`
        // is already `NOTIFIED`. That is why this must be a swap rather than a
        // compare-and-swap that returns if it reads `NOTIFIED` on failure.
        match self.state.swap(NOTIFIED, SeqCst) {
            EMPTY => return,    // no one was waiting
            NOTIFIED => return, // already unparked
            PARKED => {}        // gotta go wake someone up
            _ => panic!("inconsistent state in unpark"),
        }

        // There is a period between when the parked thread sets `state` to
        // `PARKED` (or last checked `state` in the case of a spurious wake
        // up) and when it actually waits on `cvar`. If we were to notify
        // during this period it would be ignored and then when the parked
        // thread went to sleep it would never wake up. Fortunately, it has
        // `lock` locked at this stage so we can acquire `lock` to wait until
        // it is ready to receive the notification.
        //
        // Releasing `lock` before the call to `notify_one` means that when the
        // parked thread wakes it doesn't get woken only to have to wait for us
        // to release `lock`.
        drop(self.mutex.lock());

        self.condvar.notify_one();
    }

    fn shutdown(&self) {
        self.condvar.notify_all();
    }
}

impl Default for ParkThread {
    fn default() -> Self {
        Self::new()
    }
}

// ===== impl UnparkThread =====

impl UnparkThread {
    pub(crate) fn unpark(&self) {
        self.inner.unpark();
    }
}

use crate::loom::thread::AccessError;
use std::future::Future;
use std::marker::PhantomData;
use std::rc::Rc;
use std::task::{RawWaker, RawWakerVTable, Waker};

/// Blocks the current thread using a condition variable.
#[derive(Debug)]
pub(crate) struct CachedParkThread {
    _anchor: PhantomData<Rc<()>>,
}

impl CachedParkThread {
    /// Creates a new `ParkThread` handle for the current thread.
    ///
    /// This type cannot be moved to other threads, so it should be created on
    /// the thread that the caller intends to park.
    pub(crate) fn new() -> CachedParkThread {
        CachedParkThread {
            _anchor: PhantomData,
        }
    }

    pub(crate) fn waker(&self) -> Result<Waker, AccessError> {
        self.unpark().map(UnparkThread::into_waker)
    }

    fn unpark(&self) -> Result<UnparkThread, AccessError> {
        self.with_current(ParkThread::unpark)
    }

    pub(crate) fn park(&mut self) {
        self.with_current(|park_thread| park_thread.inner.park())
            .unwrap();
    }

    pub(crate) fn park_timeout(&mut self, duration: Duration) {
        self.with_current(|park_thread| park_thread.inner.park_timeout(duration))
            .unwrap();
    }

    /// Gets a reference to the `ParkThread` handle for this thread.
    fn with_current<F, R>(&self, f: F) -> Result<R, AccessError>
    where
        F: FnOnce(&ParkThread) -> R,
    {
        CURRENT_PARKER.try_with(|inner| f(inner))
    }

    pub(crate) fn block_on<F: Future>(&mut self, f: F) -> Result<F::Output, AccessError> {
        use std::task::Context;
        use std::task::Poll::Ready;

        let waker = self.waker()?;
        let mut cx = Context::from_waker(&waker);

        pin!(f);

        loop {
            if let Ready(v) = crate::runtime::coop::budget(|| f.as_mut().poll(&mut cx)) {
                return Ok(v);
            }

            self.park();
        }
    }
}

impl UnparkThread {
    pub(crate) fn into_waker(self) -> Waker {
        unsafe {
            let raw = unparker_to_raw_waker(self.inner);
            Waker::from_raw(raw)
        }
    }
}

impl Inner {
    #[allow(clippy::wrong_self_convention)]
    fn into_raw(this: Arc<Inner>) -> *const () {
        Arc::into_raw(this) as *const ()
    }

    unsafe fn from_raw(ptr: *const ()) -> Arc<Inner> {
        Arc::from_raw(ptr as *const Inner)
    }
}

unsafe fn unparker_to_raw_waker(unparker: Arc<Inner>) -> RawWaker {
    RawWaker::new(
        Inner::into_raw(unparker),
        &RawWakerVTable::new(clone, wake, wake_by_ref, drop_waker),
    )
}

unsafe fn clone(raw: *const ()) -> RawWaker {
    Arc::increment_strong_count(raw as *const Inner);
    unparker_to_raw_waker(Inner::from_raw(raw))
}

unsafe fn drop_waker(raw: *const ()) {
    drop(Inner::from_raw(raw));
}

unsafe fn wake(raw: *const ()) {
    let unparker = Inner::from_raw(raw);
    unparker.unpark();
}

unsafe fn wake_by_ref(raw: *const ()) {
    let raw = raw as *const Inner;
    (*raw).unpark();
}

#[cfg(loom)]
pub(crate) fn current_thread_park_count() -> usize {
    CURRENT_THREAD_PARK_COUNT.with(|count| count.load(SeqCst))
}