1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
use std::sync::Arc;
use arrow2::datatypes::DataType;
use re_types_core::{Component, ComponentBatch, ComponentName, DeserializationError, SizeBytes};
// ---
#[derive(thiserror::Error, Debug)]
pub enum DataCellError {
#[error("Unsupported datatype: {0:?}")]
UnsupportedDatatype(arrow2::datatypes::DataType),
#[error("Could not serialize/deserialize data to/from Arrow: {0}")]
Arrow(#[from] arrow2::error::Error),
#[error("Could not deserialize data from Arrow: {0}")]
LoggableDeserialize(#[from] re_types_core::DeserializationError),
#[error("Could not serialize data from Arrow: {0}")]
LoggableSerialize(#[from] re_types_core::SerializationError),
// Needed to handle TryFrom<T> -> T
#[error("Infallible")]
Unreachable(#[from] std::convert::Infallible),
}
pub type DataCellResult<T> = ::std::result::Result<T, DataCellError>;
// ---
/// A cell's worth of data, i.e. a uniform array of values for a given component type.
/// This is the leaf type in our data model.
///
/// A `DataCell` can be constructed from either an iterable of native `Component`s or directly
/// from a slice of arrow data.
///
/// Behind the scenes, a `DataCell` is backed by an erased arrow array living on the heap, which
/// is likely to point into a larger batch of contiguous memory that it shares with its peers.
/// Cloning a `DataCell` is thus cheap (shallow, ref-counted).
///
/// ## Layout
///
/// A cell is an array of component instances: `[C, C, C, …]`.
///
/// Consider this example:
/// ```ignore
/// let points: &[MyPoint] = &[[10.0, 10.0].into(), [20.0, 20.0].into(), [30.0, 30.0].into()];
/// let cell = DataCell::from(points);
/// // Or, alternatively:
/// let cell = DataCell::from_component::<MyPoint>([[10.0, 10.0], [20.0, 20.0], [30.0, 30.0]]);
/// ```
///
/// The cell's datatype is now a `StructArray`:
/// ```ignore
/// Struct([
/// Field { name: "x", data_type: Float32, is_nullable: false, metadata: {} },
/// Field { name: "y", data_type: Float32, is_nullable: false, metadata: {} },
/// ])
/// ```
///
/// Or, visualized as a cell within a larger table:
/// ```text
/// ┌──────────────────────────────────────────────────┐
/// │ rerun.components.Point2D │
/// ╞══════════════════════════════════════════════════╡
/// │ [{x: 10, y: 10}, {x: 20, y: 20}, {x: 30, y: 30}] │
/// └──────────────────────────────────────────────────┘
/// ```
///
/// ## Example
///
/// ```rust
/// # use itertools::Itertools as _;
/// #
/// # use re_log_types::DataCell;
/// # use re_log_types::example_components::MyPoint;
/// # use re_types_core::Loggable as _;
/// #
/// let points: &[MyPoint] = &[
/// MyPoint { x: 10.0, y: 10.0 },
/// MyPoint { x: 20.0, y: 20.0 },
/// MyPoint { x: 30.0, y: 30.0 },
/// ];
/// let _cell = DataCell::from(points);
///
/// // Or, alternatively:
/// let cell = DataCell::from_component::<MyPoint>([
/// MyPoint { x: 10.0, y: 10.0 },
/// MyPoint { x: 20.0, y: 20.0 },
/// MyPoint { x: 30.0, y: 30.0 },
/// ]);
///
/// eprintln!("{:#?}", cell.datatype());
/// eprintln!("{cell}");
/// #
/// # assert_eq!(MyPoint::name(), cell.component_name());
/// # assert_eq!(3, cell.num_instances());
/// # assert_eq!(cell.datatype(), &MyPoint::arrow_datatype());
/// #
/// # assert_eq!(points, cell.to_native().as_slice());
/// ```
///
#[derive(Debug, Clone)]
pub struct DataCell {
/// While the arrow data is already refcounted, the contents of the `DataCell` still have to
/// be wrapped in an `Arc` to work around performance issues in `arrow2`.
///
/// See [`DataCellInner`] for more information.
pub inner: Arc<DataCellInner>,
}
impl DataCell {
#[inline]
pub fn as_ptr(&self) -> *const DataCellInner {
Arc::as_ptr(&self.inner)
}
}
impl PartialEq for DataCell {
fn eq(&self, rhs: &Self) -> bool {
let Self { inner: lhs_inner } = self;
let Self { inner: rhs_inner } = rhs;
// NOTE: Compare the inner pointers first, and only if they don't match actually do a full
// contents comparison.
// Arc normally handles this automatically if T implements `Eq`, but in our case
// `DataCellInner` cannot implement `Eq`.
// Still, the optimization is valid, and so here we are.
Arc::as_ptr(lhs_inner) == Arc::as_ptr(rhs_inner) || self.inner == rhs.inner
}
}
/// The actual contents of a [`DataCell`].
///
/// Despite the fact that the arrow data is already refcounted, this has to live separately, behind
/// an `Arc`, to work around performance issues in `arrow2` that stem from its heavy use of nested
/// virtual calls.
///
/// See #1746 for details.
#[derive(Debug, Clone)]
pub struct DataCellInner {
/// Name of the component type used in this cell.
//
// TODO(#1696): Store this within the datatype itself.
pub(crate) name: ComponentName,
/// The pre-computed size of the cell (stack + heap) as well as its underlying arrow data,
/// in bytes.
///
/// This is always zero unless [`Self::compute_size_bytes`] has been called, which is a very
/// costly operation.
pub(crate) size_bytes: u64,
/// A uniformly typed list of values for the given component type: `[C, C, C, …]`
///
/// Includes the data, its schema and probably soon the component metadata
/// (e.g. the `ComponentName`).
///
/// Internally this is always stored as an erased arrow array to avoid bad surprises with
/// frequent boxing/unboxing down the line.
/// Internally, this is most likely a slice of another, larger array (batching!).
pub(crate) values: Box<dyn arrow2::array::Array>,
}
impl PartialEq for DataCellInner {
#[inline]
fn eq(&self, rhs: &Self) -> bool {
let Self {
name,
size_bytes: _, // we ignore the size (it may be 0 = uncomputed)
values,
} = self;
name == &rhs.name && values.eq(&rhs.values)
}
}
// TODO(#1696): We shouldn't have to specify the component name separately, this should be
// part of the metadata by using an extension.
// TODO(#1696): Check that the array is indeed a leaf / component type when building a cell from an
// arrow payload.
impl DataCell {
/// Builds a new `DataCell` from a component batch.
#[inline]
pub fn from_component_batch(
batch: &dyn ComponentBatch,
) -> re_types_core::SerializationResult<Self> {
batch
.to_arrow()
.map(|arrow| DataCell::from_arrow(batch.name(), arrow))
}
/// Builds a new `DataCell` from a uniform iterable of native component values.
///
/// Fails if the given iterable cannot be serialized to arrow, which should never happen when
/// using Rerun's built-in components.
#[inline]
pub fn try_from_native<'a, C>(
values: impl IntoIterator<Item = impl Into<::std::borrow::Cow<'a, C>>>,
) -> DataCellResult<Self>
where
C: Component + Clone + 'a,
{
Ok(Self::from_arrow(C::name(), C::to_arrow(values)?))
}
/// Builds a new `DataCell` from a uniform iterable of native component values.
///
/// Fails if the given iterable cannot be serialized to arrow, which should never happen when
/// using Rerun's built-in components.
#[inline]
pub fn try_from_native_sparse<'a, C>(
values: impl IntoIterator<Item = Option<impl Into<::std::borrow::Cow<'a, C>>>>,
) -> DataCellResult<Self>
where
C: Component + Clone + 'a,
{
Ok(Self::from_arrow(C::name(), C::to_arrow_opt(values)?))
}
/// Builds a new `DataCell` from a uniform iterable of native component values.
///
/// Panics if the given iterable cannot be serialized to arrow, which should never happen when
/// using Rerun's built-in components.
/// See [`Self::try_from_native`] for the fallible alternative.
#[inline]
pub fn from_native<'a, C>(
values: impl IntoIterator<Item = impl Into<::std::borrow::Cow<'a, C>>>,
) -> Self
where
C: Component + Clone + 'a,
{
Self::try_from_native(values).unwrap()
}
/// Builds a new `DataCell` from a uniform iterable of native component values.
///
/// Panics if the given iterable cannot be serialized to arrow, which should never happen when
/// using Rerun's built-in components.
/// See [`Self::try_from_native`] for the fallible alternative.
#[inline]
pub fn from_native_sparse<'a, C>(
values: impl IntoIterator<Item = Option<impl Into<::std::borrow::Cow<'a, C>>>>,
) -> Self
where
C: Component + Clone + 'a,
{
Self::try_from_native_sparse(values).unwrap()
}
/// Builds a cell from an iterable of items that can be turned into a [`Component`].
#[inline]
pub fn from_component<'a, C>(values: impl IntoIterator<Item = impl Into<C>>) -> Self
where
C: Component + Clone + 'a,
C: Into<::std::borrow::Cow<'a, C>>,
{
Self::from_native(values.into_iter().map(Into::into))
}
/// Builds a cell from an iterable of items that can be turned into a [`Component`].
#[inline]
pub fn from_component_sparse<'a, C>(
values: impl IntoIterator<Item = Option<impl Into<C>>>,
) -> Self
where
C: Component + Clone + 'a,
C: Into<::std::borrow::Cow<'a, C>>,
{
Self::from_native_sparse(values.into_iter().map(|value| value.map(Into::into)))
}
/// Builds a new `DataCell` from an arrow array.
///
/// Fails if the array is not a valid list of components.
#[inline]
#[allow(clippy::unnecessary_wraps)] // TODO(cmc): check that it is indeed a component datatype
pub fn try_from_arrow(
name: ComponentName,
values: Box<dyn arrow2::array::Array>,
) -> DataCellResult<Self> {
Ok(Self {
inner: Arc::new(DataCellInner {
name,
size_bytes: 0,
values,
}),
})
}
/// Builds a new `DataCell` from an arrow array.
///
/// Panics if the array is not a valid list of components.
/// See [`Self::try_from_arrow`] for the fallible alternative.
#[inline]
pub fn from_arrow(name: ComponentName, values: Box<dyn arrow2::array::Array>) -> Self {
Self::try_from_arrow(name, values).unwrap()
}
// ---
/// Builds an empty `DataCell` from a native component type.
#[inline]
pub fn from_native_empty<C: Component>() -> Self {
Self::from_arrow_empty(C::name(), C::arrow_field().data_type)
}
/// Builds an empty `DataCell` from an arrow datatype.
///
/// Fails if the datatype is not a valid component type.
#[inline]
#[allow(clippy::unnecessary_wraps)] // TODO(cmc): check that it is indeed a component datatype
pub fn try_from_arrow_empty(
name: ComponentName,
datatype: arrow2::datatypes::DataType,
) -> DataCellResult<Self> {
let mut inner = DataCellInner {
name,
size_bytes: 0,
values: arrow2::array::new_empty_array(datatype),
};
inner.compute_size_bytes();
Ok(Self {
inner: Arc::new(inner),
})
}
/// Builds an empty `DataCell` from an arrow datatype.
///
/// Panics if the datatype is not a valid component type.
/// See [`Self::try_from_arrow_empty`] for a fallible alternative.
#[inline]
pub fn from_arrow_empty(name: ComponentName, datatype: arrow2::datatypes::DataType) -> Self {
Self::try_from_arrow_empty(name, datatype).unwrap()
}
// ---
/// Returns the contents of the cell as an arrow array (shallow clone).
///
/// Avoid using raw arrow arrays unless you absolutely have to: prefer working directly with
/// `DataCell`s, `DataRow`s & `DataTable`s instead.
/// If you do use them, try to keep the scope as short as possible: holding on to a raw array
/// might prevent the datastore from releasing memory from garbage collected data.
#[inline]
pub fn to_arrow(&self) -> Box<dyn arrow2::array::Array> {
self.inner.values.clone() /* shallow */
}
/// Returns the contents of the cell as a reference to an arrow array.
///
/// Avoid using raw arrow arrays unless you absolutely have to: prefer working directly with
/// `DataCell`s, `DataRow`s & `DataTable`s instead.
/// If you do use them, try to keep the scope as short as possible: holding on to a raw array
/// might prevent the datastore from releasing memory from garbage collected data.
#[inline]
pub fn as_arrow_ref(&self) -> &dyn arrow2::array::Array {
&*self.inner.values
}
/// Returns the contents of the cell as an arrow array (shallow clone) wrapped in a unit-length
/// list-array.
///
/// Useful when dealing with cells of different lengths in context that don't allow for it.
///
/// * Before: `[C, C, C, …]`
/// * After: `ListArray[ [C, C, C, C] ]`
//
// TODO(#1696): this shouldn't be public, need to make it private once the store has been
// patched to use datacells directly.
// TODO(cmc): effectively, this returns a `DataColumn`… think about that.
#[doc(hidden)]
#[inline]
pub fn to_arrow_monolist(&self) -> Box<dyn arrow2::array::Array> {
use arrow2::{array::ListArray, offset::Offsets};
let values = self.to_arrow();
let datatype = self.datatype().clone();
let datatype = ListArray::<i32>::default_datatype(datatype);
let offsets = Offsets::try_from_lengths(std::iter::once(self.num_instances() as usize))
.unwrap()
.into();
let validity = None;
ListArray::<i32>::new(datatype, offsets, values, validity).boxed()
}
/// Returns the contents of the cell as an iterator of native components.
///
/// Fails if the underlying arrow data cannot be deserialized into `C`.
#[inline]
pub fn try_to_native<'a, C: Component + 'a>(&'a self) -> DataCellResult<Vec<C>> {
// NOTE(#3850): Don't add a profile scope here: the profiler overhead is too big for this fast function.
// re_tracing::profile_function!(C::name().as_str());
Ok(C::from_arrow(self.inner.values.as_ref())?)
}
/// Returns the contents of an expected mono-component as an `Option<C>`.
///
/// Fails if the underlying arrow data cannot be deserialized into `C`.
#[inline]
pub fn try_to_native_mono<'a, C: Component + 'a>(&'a self) -> DataCellResult<Option<C>> {
// NOTE(#3850): Don't add a profile scope here: the profiler overhead is too big for this fast function.
// re_tracing::profile_function!(C::name().as_str());
let mut instances = C::from_arrow_opt(self.inner.values.as_ref())?.into_iter();
let result = match instances.next() {
// It's ok to have no result from the iteration: this is what we
// should see for a cleared component (logged as an empty set).
None => Ok(None),
// It's not ok to have a null in a mono-component array. It should
// have been logged as an empty set, so we consider this to be missing
// data.
Some(component) => Ok(Some(component.ok_or_else(|| {
DeserializationError::MissingData {
backtrace: backtrace::Backtrace::new_unresolved(),
}
})?)),
};
if instances.next().is_some() {
re_log::warn_once!("Unexpected batch for {}", C::name());
}
result
}
/// Returns the contents of the cell as an iterator of native components.
///
/// Panics if the underlying arrow data cannot be deserialized into `C`.
/// See [`Self::try_to_native`] for a fallible alternative.
#[inline]
pub fn to_native<'a, C: Component + 'a>(&'a self) -> Vec<C> {
self.try_to_native().unwrap()
}
/// Returns the contents of the cell as an iterator of native optional components.
///
/// Fails if the underlying arrow data cannot be deserialized into `C`.
#[inline]
pub fn try_to_native_opt<'a, C: Component + 'a>(&'a self) -> DataCellResult<Vec<Option<C>>> {
// NOTE(#3850): Don't add a profile scope here: the profiler overhead is too big for this fast function.
// re_tracing::profile_function!(C::name().as_str());
Ok(C::from_arrow_opt(self.inner.values.as_ref())?)
}
/// Returns the contents of the cell as an iterator of native optional components.
///
/// Panics if the underlying arrow data cannot be deserialized into `C`.
/// See [`Self::try_to_native_opt`] for a fallible alternative.
#[inline]
pub fn to_native_opt<'a, C: Component + 'a>(&'a self) -> Vec<Option<C>> {
self.try_to_native_opt().unwrap()
}
}
impl DataCell {
/// The name of the component type stored in the cell.
#[inline]
pub fn component_name(&self) -> ComponentName {
self.inner.name
}
/// The type of the component stored in the cell, i.e. the cell is an array of that type.
#[inline]
pub fn datatype(&self) -> &arrow2::datatypes::DataType {
self.inner.values.data_type()
}
/// The length of the cell's array, i.e. how many component instances are in the cell?
#[inline]
pub fn num_instances(&self) -> u32 {
self.inner.values.len() as _
}
#[inline]
pub fn is_empty(&self) -> bool {
self.inner.values.is_empty()
}
/// Returns `true` if the underlying array is dense (no nulls).
#[inline]
pub fn is_dense(&self) -> bool {
if let Some(validity) = self.as_arrow_ref().validity() {
validity.unset_bits() == 0
} else {
true
}
}
/// Returns `true` if the underlying array is both sorted (increasing order) and contains only
/// unique values.
///
/// The cell must be dense, otherwise the result of this method is undefined.
pub fn is_sorted_and_unique(&self) -> DataCellResult<bool> {
use arrow2::{
array::{Array, PrimitiveArray},
types::NativeType,
};
debug_assert!(self.is_dense());
let arr = self.as_arrow_ref();
fn is_sorted_and_unique_primitive<T: NativeType + PartialOrd>(arr: &dyn Array) -> bool {
// NOTE: unwrap cannot fail, checked by caller just below
let values = arr.as_any().downcast_ref::<PrimitiveArray<T>>().unwrap();
values.values().windows(2).all(|v| v[0] < v[1])
}
// TODO(cmc): support more datatypes as the need arise.
match arr.data_type() {
DataType::Int8 => Ok(is_sorted_and_unique_primitive::<i8>(arr)),
DataType::Int16 => Ok(is_sorted_and_unique_primitive::<i16>(arr)),
DataType::Int32 => Ok(is_sorted_and_unique_primitive::<i32>(arr)),
DataType::Int64 => Ok(is_sorted_and_unique_primitive::<i64>(arr)),
DataType::UInt8 => Ok(is_sorted_and_unique_primitive::<u8>(arr)),
DataType::UInt16 => Ok(is_sorted_and_unique_primitive::<u16>(arr)),
DataType::UInt32 => Ok(is_sorted_and_unique_primitive::<u32>(arr)),
DataType::UInt64 => Ok(is_sorted_and_unique_primitive::<u64>(arr)),
DataType::Float32 => Ok(is_sorted_and_unique_primitive::<f32>(arr)),
DataType::Float64 => Ok(is_sorted_and_unique_primitive::<f64>(arr)),
_ => Err(DataCellError::UnsupportedDatatype(arr.data_type().clone())),
}
}
}
// ---
impl<'a, C> From<&'a [C]> for DataCell
where
C: Component + Clone + 'a,
&'a C: Into<::std::borrow::Cow<'a, C>>,
{
#[inline]
fn from(values: &'a [C]) -> Self {
Self::from_native(values.iter())
}
}
impl<'a, C> From<[C; 1]> for DataCell
where
C: Component + Clone + 'a,
C: Into<::std::borrow::Cow<'a, C>>,
{
#[inline]
fn from(values: [C; 1]) -> Self {
Self::from_native(values)
}
}
impl<'a, C> From<&'a Vec<C>> for DataCell
where
C: Component + Clone + 'a,
&'a C: Into<::std::borrow::Cow<'a, C>>,
{
#[inline]
fn from(c: &'a Vec<C>) -> Self {
c.as_slice().into()
}
}
impl<'a, C> From<Vec<C>> for DataCell
where
C: Component + Clone + 'a,
C: Into<::std::borrow::Cow<'a, C>>,
{
#[inline]
fn from(c: Vec<C>) -> Self {
Self::from_native(c)
}
}
// ---
impl std::fmt::Display for DataCell {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!(
"DataCell({})",
re_format::format_bytes(self.inner.size_bytes as _)
))?;
re_format_arrow::format_table(
// NOTE: wrap in a ListArray so that it looks more cell-like (i.e. single row)
[&*self.to_arrow_monolist()],
[self.component_name()],
)
.fmt(f)
}
}
// ---
impl DataCell {
/// Compute and cache the total size (stack + heap) of the inner cell and its underlying arrow
/// array, in bytes.
/// This does nothing if the size has already been computed and cached before.
///
/// The caller must the sole owner of this cell, as this requires mutating an `Arc` under the
/// hood. Returns false otherwise.
///
/// Beware: this is _very_ costly!
#[inline]
pub fn compute_size_bytes(&mut self) -> bool {
if let Some(inner) = Arc::get_mut(&mut self.inner) {
inner.compute_size_bytes();
return true;
}
if self.inner.size_bytes == 0 {
re_log::error_once!(
"cell size could _not_ be computed (the cell has already been shared)"
);
return false;
}
true
}
}
impl SizeBytes for DataCell {
#[inline]
fn heap_size_bytes(&self) -> u64 {
if 0 < self.inner.size_bytes {
self.inner.size_bytes
} else {
// NOTE: Relying on unsized cells is always a mistake, but it isn't worth crashing
// the viewer when in release mode.
debug_assert!(
false,
"called `DataCell::heap_size_bytes() without computing it first"
);
re_log::warn_once!("called `DataCell::heap_size_bytes() without computing it first");
0
}
}
}
impl DataCellInner {
/// Compute and cache the total size (stack + heap) of the cell and its underlying arrow array,
/// in bytes.
/// This does nothing if the size has already been computed and cached before.
///
/// Beware: this is _very_ costly!
#[inline]
pub fn compute_size_bytes(&mut self) {
let Self {
name,
size_bytes,
values,
} = self;
// NOTE: The computed size cannot ever be zero.
if *size_bytes > 0 {
return;
}
let values: &dyn arrow2::array::Array = values.as_ref();
*size_bytes = name.total_size_bytes()
+ size_bytes.total_size_bytes()
+ values.data_type().total_size_bytes()
+ values.total_size_bytes();
}
}