1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
use core::{marker::PhantomData, mem::MaybeUninit};
use crate::{backvec::BackVec, Offset, Primitive, WriteAsOffset};
#[derive(Debug)]
/// Builder for serializing flatbuffers.
///
///
/// # Examples
/// ```
/// use planus::Builder;
/// use planus_example::monster_generated::my_game::sample::Weapon;
/// let mut builder = Builder::new();
/// let weapon = Weapon::create(&mut builder, "Axe", 24);
/// builder.finish(weapon, None);
/// ```
pub struct Builder {
inner: BackVec,
// This is a bit complicated. The buffer has support for guaranteeing a
// specific write gets a specific alignment. It has many writes and thus
// many promises, so how does keep track of this this across those promises, even
// when writing from the back?
//
// The algorithm works by aggregating all of the promises into one big promise.
// Specifically, we promise that the remaining part of the buffer will always
// be of size `self.delayed_bytes + self.alignment() * K` where we are free to
// choose K as we want.
//
// Initially we set `delayed_bytes` to 0 and `alignment` to 1, i.e. we have
// only promised to write `0 + 1 * K` bytes, for any `K` we choose, which will
// be true no matter how many bytes we write.
//
// Whenever we get a new request `(req_size, req_alignment)`, then that
// `req_size` will be counted towards the previous promises, i.e. we need
// to decrease `self.delayed_bytes()` by `req_bytes` and calculate the new value
// of `req_size` modulo `alignment`. However we also need to fulfil this new
// promise.
//
// To do this, we do two things. 1) We insert sufficient padding, before the
// current request, to make sure that the current request is compatible with
// the previous ones. 2) We set `alignment = alignment.max(req_alignment)`.
//
// One small wrinkle is that we do not store `alignment` directly for performance
// reasons. Instead we store `alignment_mask = alignment - 1`, so we can do use
// binary and (`&`) instead of modulo (`%`).
delayed_bytes: usize,
alignment_mask: usize,
#[cfg(debug_assertions)]
// Bytes missing to be written by a call to prepare_write
missing_bytes: usize,
}
impl Default for Builder {
fn default() -> Self {
Self::with_capacity(0)
}
}
impl Builder {
/// Creates a new Builder.
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Gets the length of the internal buffer in bytes.
pub fn len(&self) -> usize {
self.inner.len()
}
/// Returns true if the internal buffer is empty.
pub fn is_empty(&self) -> bool {
self.len() == 0
}
/// Creates a new builder with a specific internal capacity already allocated.
pub fn with_capacity(capacity: usize) -> Self {
Self {
inner: BackVec::with_capacity(capacity),
delayed_bytes: 0,
alignment_mask: 0,
#[cfg(debug_assertions)]
missing_bytes: 0,
}
}
/// Resets the builders internal state and clears the internal buffer.
pub fn clear(&mut self) {
self.inner.clear();
self.delayed_bytes = 0;
self.alignment_mask = 0;
#[cfg(debug_assertions)]
{
self.missing_bytes = 0;
}
}
#[doc(hidden)]
pub fn prepare_write(&mut self, size: usize, alignment_mask: usize) {
debug_assert!((alignment_mask + 1) & alignment_mask == 0); // Check that the alignment is a power of two
#[cfg(debug_assertions)]
debug_assert_eq!(self.missing_bytes, 0);
let delayed_bytes = self.delayed_bytes.wrapping_sub(size) & self.alignment_mask;
let needed_padding = delayed_bytes & alignment_mask;
self.delayed_bytes = delayed_bytes.wrapping_sub(needed_padding);
self.alignment_mask |= alignment_mask;
self.inner.reserve(size.wrapping_add(needed_padding));
// TODO: investigate if it makes sense to use an extend_with_zeros_unchecked for performance, given
// that we know we have enough space
self.inner.extend_with_zeros(needed_padding);
debug_assert_eq!(self.delayed_bytes & alignment_mask, 0);
#[cfg(debug_assertions)]
{
self.missing_bytes = size;
}
}
#[doc(hidden)]
pub fn current_offset<T: ?Sized>(&self) -> Offset<T> {
Offset {
offset: self.inner.len() as u32,
phantom: PhantomData,
}
}
#[doc(hidden)]
pub fn write(&mut self, buffer: &[u8]) {
#[cfg(debug_assertions)]
{
self.missing_bytes = self.missing_bytes.checked_sub(buffer.len()).unwrap();
}
// TODO: investigate if it makes sense to use an extend_from_slice_unchecked for performance, given
// that we know we have enough space
self.inner.extend_from_slice(buffer);
}
#[doc(hidden)]
pub unsafe fn write_with(
&mut self,
size: usize,
alignment_mask: usize,
f: impl FnOnce(u32, &mut [MaybeUninit<u8>]),
) {
self.prepare_write(size, alignment_mask);
let offset = (self.inner.len() + size) as u32;
self.inner.extend_write(size, |bytes| f(offset, bytes));
#[cfg(debug_assertions)]
{
self.missing_bytes = self.missing_bytes.checked_sub(size).unwrap();
}
}
#[doc(hidden)]
pub fn get_buffer_position_and_prepare_write(
&mut self,
vtable_size: usize,
object_size: usize,
object_alignment_mask: usize,
) -> usize {
debug_assert!((object_alignment_mask + 1) & object_alignment_mask == 0); // Check that the alignment is a power of two
const VTABLE_ALIGNMENT: usize = 2;
const VTABLE_ALIGNMENT_MASK: usize = VTABLE_ALIGNMENT - 1;
self.prepare_write(vtable_size + 4, VTABLE_ALIGNMENT_MASK);
let delayed_bytes = self.delayed_bytes.wrapping_sub(object_size) & self.alignment_mask;
let needed_padding = delayed_bytes & object_alignment_mask;
self.inner.len() + vtable_size + 4 + needed_padding + object_size + 4
}
/// Finish writing the internal buffer and return a byte slice of it.
///
/// This will make sure all alignment requirements are fullfilled and that
/// the file identifier has been written if specified.
///
/// # Examples
/// ```
/// use planus::Builder;
/// use planus_example::monster_generated::my_game::sample::Weapon;
/// let mut builder = Builder::new();
/// let weapon = Weapon::create(&mut builder, "Axe", 24);
/// builder.finish(weapon, None);
/// ```
///
/// It can also be used to directly serialize an owned flatbuffers struct
/// ```
/// use planus::Builder;
/// use planus_example::monster_generated::my_game::sample::Weapon;
/// let mut builder = Builder::new();
/// let weapon = Weapon { name: Some("Sword".to_string()), damage: 12 };
/// let data = builder.finish(&weapon, None);
/// ```
pub fn finish<T>(
&mut self,
root: impl WriteAsOffset<T>,
file_identifier: Option<[u8; 4]>,
) -> &[u8] {
let root = root.prepare(self);
if let Some(file_identifier) = file_identifier {
// TODO: how does alignment interact with file identifiers? Is the alignment with out without the header?
self.prepare_write(
8,
<Offset<T> as Primitive>::ALIGNMENT_MASK.max(self.alignment_mask),
);
self.write(&(4 + self.inner.len() as u32 - root.offset).to_le_bytes());
self.write(&file_identifier);
} else {
self.prepare_write(
4,
<Offset<T> as Primitive>::ALIGNMENT_MASK.max(self.alignment_mask),
);
self.write(&(4 + self.inner.len() as u32 - root.offset).to_le_bytes());
}
debug_assert_eq!(self.delayed_bytes, 0);
self.inner.as_slice()
}
}
#[cfg(test)]
mod tests {
use alloc::vec::Vec;
use rand::{thread_rng, Rng};
use super::*;
#[test]
fn test_buffer_random() {
let mut slice = [0; 128];
let mut rng = thread_rng();
let mut back_offsets: Vec<(usize, usize, usize)> = Vec::new();
for _ in 0..50 {
let mut builder = Builder::new();
back_offsets.clear();
for byte in 1..50 {
let size: usize = rng.gen::<usize>() % slice.len();
let slice = &mut slice[..size];
for p in &mut *slice {
*p = byte;
}
let alignment: usize = 1 << (rng.gen::<u32>() % 5);
let alignment_mask = alignment - 1;
builder.prepare_write(size, alignment_mask);
let len_before = builder.inner.len();
builder.write(slice);
assert!(builder.inner.len() < len_before + slice.len() + alignment);
back_offsets.push((builder.inner.len(), size, alignment));
}
let random_padding: usize = rng.gen::<usize>() % slice.len();
let slice = &mut slice[..random_padding];
for p in &mut *slice {
*p = rng.gen();
}
builder.prepare_write(random_padding, 1);
builder.write(slice);
let buffer = builder.finish(builder.current_offset::<()>(), None);
for (i, (back_offset, size, alignment)) in back_offsets.iter().enumerate() {
let byte = (i + 1) as u8;
let offset = buffer.len() - back_offset;
assert_eq!(offset % alignment, 0);
assert!(buffer[offset..offset + size].iter().all(|&b| b == byte));
}
}
}
#[test]
fn test_buffer_align() {
let mut builder = Builder::new();
builder.prepare_write(3, 0);
builder.write(b"MNO");
assert_eq!(builder.delayed_bytes, 0);
builder.prepare_write(4, 1);
builder.write(b"IJKL");
assert_eq!(builder.delayed_bytes, 0);
builder.prepare_write(8, 3);
builder.write(b"ABCDEFGH");
assert_eq!(builder.delayed_bytes, 0);
builder.prepare_write(7, 0);
builder.write(b"0123456");
assert_eq!(
builder.finish(builder.current_offset::<()>(), None),
b"\x05\x00\x00\x00\x000123456ABCDEFGHIJKLMNO"
);
builder.clear();
builder.prepare_write(4, 3);
builder.write(b"IJKL");
assert_eq!(builder.delayed_bytes, 0);
builder.prepare_write(1, 0);
builder.write(b"X");
assert_eq!(builder.delayed_bytes, 3);
builder.prepare_write(1, 0);
builder.write(b"Y");
assert_eq!(builder.delayed_bytes, 2);
builder.prepare_write(8, 7);
builder.write(b"ABCDEFGH");
assert_eq!(builder.delayed_bytes, 0);
assert_eq!(
builder.finish(builder.current_offset::<()>(), None),
b"\x08\x00\x00\x00\x00\x00\x00\x00ABCDEFGH\x00\x00YXIJKL"
);
}
}